Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
My Ha
Xem chi tiết
Nguyễn Minh Đăng
10 tháng 10 2020 lúc 21:07

Ta có: \(\frac{a}{b}=\frac{c}{d}\)

\(\Leftrightarrow\frac{b}{a}=\frac{d}{c}\Leftrightarrow\frac{b}{a}+1=\frac{d}{c}+1\Leftrightarrow\frac{a+b}{a}=\frac{c+d}{c}\) (1)

\(\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)

\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{b}{a}=\frac{d}{c}\Leftrightarrow1-\frac{b}{a}=1-\frac{d}{c}\)

\(\Leftrightarrow\frac{a-b}{a}=\frac{c-d}{c}\Leftrightarrow\frac{a}{a-b}=\frac{c}{c-d}\) (2)

Nhân vế (1) và (2) lại ta được:

\(\frac{a+b}{a}\cdot\frac{a}{a-b}=\frac{c+d}{c}\cdot\frac{c}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

Khách vãng lai đã xóa
Dũng Phạm Tiến
Xem chi tiết
Nguyễn Anh Duy
12 tháng 2 2017 lúc 22:33

Áp dụng tỉ lệ thức bằng nhau, ta có:

\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{(a+b+c)-(a-b+c)}{(a+b-c-)-(a-b-c)}=\frac{2b}{2b}=1\)

\(<=> \frac{a+b+c}{a+b-c}=1\)

\(<=> a+b+c=a+b-c\)

\(<=> 2c=0\)

\(<=> c=0\)

Bui Cam Lan Bui
Xem chi tiết
Nguyễn Huy Hoàng 2
19 tháng 9 2015 lúc 21:40

Từ tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{\left(a+b+c\right)-\left(a-b+c\right)}{\left(a+b-c\right)-\left(a-b-c\right)}=\frac{2b}{2b}=1\)

\(\Rightarrow a+b+c=a+b-c\)

\(\Rightarrow c=-c\Rightarrow2c=0\Rightarrow c=0\)

Trần Thị Loan
19 tháng 9 2015 lúc 21:42

Áp dụng tính chất của dãy tỉ số bằng nhau ta có: \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{\left(a+b+c\right)+\left(a-b+c\right)}{\left(a+b-c\right)+\left(a-b-c\right)}=\frac{2\left(a+c\right)}{2\left(a-c\right)}=\frac{a+c}{a-c}\)

Ta có \(\frac{a+b+c}{a+b-c}=\frac{a+c}{a-c}\). Áp dụng t/c của dãy tỉ số bằng nhau ta có: \(\frac{a+b+c}{a+b-c}=\frac{a+c}{a-c}=\frac{\left(a+b+c\right)-\left(a+c\right)}{\left(a+b-c\right)-\left(a-c\right)}=\frac{b}{b}=1\)

=> \(\frac{a+c}{a-c}=1\) => a + c = a - c => c = - c => c + c = 0 => 2.c = 0 => c = 0 

Vậy ...................

Nguyễn Thị Chi
Xem chi tiết
Nguyễn Huy Tú
29 tháng 9 2016 lúc 20:09

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)

a) Ta có: 

\(\frac{a}{a+b}=\frac{bk}{bk+b}=\frac{bk}{b\left(k+1\right)}=\frac{k}{k+1}\) (1)

\(\frac{c}{c+d}=\frac{dk}{dk+d}=\frac{dk}{d\left(k+1\right)}=\frac{k}{k+1}\) (2)

Từ (1) và (2) suy ra \(\frac{a}{a+b}=\frac{c}{c+d}\)

b) Ta có:

\(\frac{a}{a-b}=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\) (1)

\(\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\) (2)

Từ (1) và (2) suy ra \(\frac{a}{a-b}=\frac{c}{c-d}\)

c) Ta có:

\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\) (1)

\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\) (2)

Từ (1) và (2) suy ra \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

Trần Hữu Định
Xem chi tiết
Nguyễn Thanh Huyền
Xem chi tiết
Akai Haruma
29 tháng 6 2019 lúc 23:57

Lời giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=t(t\neq \pm 1)\) \(\Rightarrow a=bt;c=dt\)

Khi đó:

\(\frac{a+b}{a-b}=\frac{bt+b}{bt-b}=\frac{b(t+1)}{b(t-1)}=\frac{t+1}{t-1}\)

\(\frac{c+d}{c-d}=\frac{dt+d}{dt-d}=\frac{d(t+1)}{d(t-1)}=\frac{t+1}{t-1}\)

\(\Rightarrow \frac{a+b}{a-b}=\frac{c+d}{c-d}\) (đpcm)

zZz Cool Kid zZz
12 tháng 7 2019 lúc 9:29

Cách khác:

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau,ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(đpcm\right)\)

Phạm Thùy Dung
Xem chi tiết
Phạm Thùy Dung
4 tháng 12 2019 lúc 16:45

Nhanh lên

Khách vãng lai đã xóa
Mất nick đau lòng con qu...
4 tháng 12 2019 lúc 16:48

\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=1\)

\(\Rightarrow\)\(a+b+c=a+b-c\)\(\Leftrightarrow\)\(c=0\)

Khách vãng lai đã xóa
huong vu
Xem chi tiết
Nguyễn Nhật Hạ
Xem chi tiết