Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khanh Tú
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 6 2021 lúc 16:42

Ta có: \(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BH\\BH\perp AC\left(\text{H là trực tâm ABC}\right)\end{matrix}\right.\)  \(\Rightarrow BH\perp\left(SAC\right)\Rightarrow BH\perp SC\) (1)

Lại có I là trực tâm SBC \(\Rightarrow BI\perp SC\) (2)

(1);(2) \(\Rightarrow SC\perp\left(BIH\right)\Rightarrow SC\perp IH\) (3)

Gọi M là giao điểm AH và BC \(\Rightarrow\) M là trung điểm BC (do tam giác ABC đều)

Mà SBC cân tại S (dễ dàng chứng minh SB=SC bằng Pitago) \(\Rightarrow SM\) đồng thời là đường cao trong tam giác SBC hay \(I\in SM\)

\(\Rightarrow IH\in\left(SAM\right)\)

\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\AH\perp BC\left(\text{H là trực tâm ABC}\right)\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAM\right)\Rightarrow BC\perp IH\) (4)

(3); (4) \(\Rightarrow IH\perp\left(SBC\right)\)

b. 

\(AM=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều) \(\Rightarrow SM=\sqrt{SA^2+AM^2}=\dfrac{a\sqrt{39}}{2}\)

ABC đều nên H là trực tâm đồng thời là trọng tâm \(\Rightarrow\dfrac{MH}{AM}=\dfrac{1}{3}\) \(\Rightarrow MH=\dfrac{AM}{3}=\dfrac{a\sqrt{3}}{6}\)

\(\Rightarrow IM=MH.cos\widehat{AMS}=MH.\dfrac{AM}{SM}=\dfrac{a\sqrt{39}}{78}\)

\(V_{IHBC}=\dfrac{IM}{SM}.\dfrac{MH}{AM}.V_{SABC}=\dfrac{1}{117}.\dfrac{1}{3}.3a.\dfrac{a^2\sqrt{3}}{4}=\dfrac{a^3\sqrt{3}}{468}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 4 2018 lúc 17:04

Đáp án B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 1 2019 lúc 12:36

Đáp án D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 7 2018 lúc 6:17

Đáp án A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 6 2017 lúc 16:07

Đáp án D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 1 2020 lúc 16:27

Đáp án A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 5 2019 lúc 5:43

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 9 2019 lúc 16:27

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Gọi A’ là giao điểm của AH và BC. Ta cần chứng minh ba điểm S, K, A’ thẳng hàng.

 Vì H là trực tâm của tam giác ABC nên AA′ ⊥ BC. Mặt khác theo giả thiết ta có: SA ⊥ (ABC), do đó SA ⊥ BC.

 Từ đó ta suy ra BC ⊥ (SAA′) và BC ⊥ SA′. Vậy SA’ là đường cao của tam giác SBC nên SA’ là phải đi qua trực tâm K. Vậy ba đường thẳng AH, SK và BC đồng quy.

 b) Vì K là trực tâm của tam giác SBC nên BK ⊥ SC (1)

 Mặt khác ta có BH ⊥ AC vì H là trực tâm của tam giác ABC và BH ⊥ SA vì SA ⊥ (ABC).

 Do đó BH ⊥ (ABC) nên BH ⊥ SC (2).

 Từ (1) và (2) ta suy ra SC ⊥ (BHK). Vì mặt phẳng (SAC) chứa SC mà SC ⊥ (BHK) nên ta có (SAC) ⊥ (BHK).

 c) Ta có

Giải sách bài tập Toán 11 | Giải sbt Toán 11

 Mặt phẳng (BHK) chứa HK mà HK ⊥ (SBC) nên (BHK) ⊥ (SBC).

Phungg Thanh
Xem chi tiết