Cho hình chóp S.ABC có SA ⊥ (ABC). Gọi H và K lần lượt là trực tâm của các tam giác ABC và SBC:
Mặt phẳng (BKH) vuông góc với đường thẳng:
A. SC
B. AC
C. AH
D. AB
Cho hình chóp S.ABC có SA ⊥ (ABC). Gọi H và K lần lượt là trực tâm của các tam giác ABC và SBC.
Mặt phẳng (BKH) vuông góc với đường thẳng:
A. SC
B. AC
C. AH
D. AB
Cho hình chóp S.ABC có SA ⊥ (ABC). Gọi H và K lần lượt là trực tâm của các tam giác ABC và SBC.
Mặt phẳng (BKH) vuông góc với mặt phẳng:
A. (ABC)
B. (SAB)
C. (SAG)
D. (SAC)
Cho tứ diện S.ABC có SA vuông góc với mặt phẳng (ABC). Gọi H , K lần lượt là trực tâm của tam giác ABC và SBC.
a) Chứng minh ba đường thẳng AH, SK, BC đồng quy.
b) Chứng minh rằng SC vuông góc với mặt phẳng (BHK) và HK vuông góc với mặt phẳng (SBC).
c) Xác định đường vuông góc chung của BC và SA.
Cho hình chóp S.ABC có SA ⊥ (ABC). Gọi H và K lần lượt là trực tâm của các tam giác ABC và SBC.
Đường thẳng BH vuông góc với đường thẳng:
A. AG
B. SC
C. CM
D. SG
Cho hình chóp S.ABC có đường thẳng SA vuông góc với đáy và tam giác ABC không vuông. Gọi H, K lần lượt là trực tâm các tam giác ABC và tam giác SBC. Khẳng định nào sau đây đúng?
A. SA, HK, BC đôi một song song
B. AH, BC, SK đồng phẳng
C. SA, HK, BC đôi một chéo nhau
D. AH, SK, BC đồng quy
Tứ diện SABC có SA vuông góc với mặt phẳng (ABC). Gọi H và K lần lượt là trực tâm của các tam giác ABC và SBC. Chứng minh rằng:
a) AH, SK và BC đồng quy.
b) SC vuông góc với mặt phẳng (BHK) và (SAC) ⊥ (BHK)
c) HK vuông góc với mặt phẳng (SBC) và (SBC) ⊥ (BHK)
Cho hình chóp S.ABC có đáy ABC là tam giác đều, I là trung điểm của BC, SA vuông góc với (ABC). Gọi H, O lần lượt là trực tâm của tam giác SBC, ABC, K là giao điểm của hai đường thẳng SA và OH. Chứng minh rằng:
a) OH vuông góc với (SBC)
b) SO vuông góc với IK.
Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a , SA=a và SA vuông góc với mặt phẳng (ABC). Gọi M và N lần lượt là hình chiếu vuông góc của A trên các đường thẳng SB và SC. Thể tích V của khối chóp A.BCMN bằng