Cho hình chóp S. ABC có đáy là tam giác vuông tại B, S A ⊥ A B C , S A = 3 cm, A B = 1 cm, B C = 2 cm Mặt bên (SBC) hợp với đáy một góc bằng
A. 30 °
B. 90 °
C. 60 °
D. 45 °
Kẻ \(BK\perp AC\Rightarrow BK\perp\left(SAC\right)\)
\(\Rightarrow BK=d\left(B;\left(SAC\right)\right)\)
\(\dfrac{1}{BK^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Rightarrow BK=\dfrac{AB.AC}{\sqrt{AB^2+AC^2}}=\dfrac{a\sqrt{3}}{2}\)
Kẻ \(CP\perp BH\Rightarrow CP\perp\left(SBH\right)\)
\(\Rightarrow CP=d\left(C;\left(SBH\right)\right)\)
\(\widehat{CBP}=\widehat{ACB}=30^0\Rightarrow CH=BC.sin30^0=\dfrac{a\sqrt{3}}{2}\)
\(BH=\dfrac{AC}{2}=\dfrac{1}{2}\sqrt{AB^2+AC^2}=a\)\(\Rightarrow SH=\sqrt{SB^2-BH^2}=a\)
Kẻ \(HE\perp BC\) , kẻ \(HF\perp SE\Rightarrow HF=d\left(H;\left(SBC\right)\right)\)
\(HE=CH.sin30^0=\dfrac{a}{2}\)
\(\dfrac{1}{HF^2}=\dfrac{1}{SH^2}+\dfrac{1}{HE^2}\Rightarrow HF=\dfrac{SH.HE}{\sqrt{SH^2+HE^2}}=\dfrac{a\sqrt{5}}{5}\)
Cho hình chóp S. ABC có đáy ABC là tam giác vuông tại B, AB = a, BC = a 3 . Hình chiếu vuông góc của S trên mặt đáy là trung điểm của cạnh AC. Biết SB = a 2 Tính theo a khoảng cách từ H đến mặt phẳng (SAB)
A. 7 a 21 3
B. a 21 7
C. a 21 3
D. 3 a 21 7
Cho hình chóp S. ABC có đáy là tam giác ABC đều cạnh a, tam giác SBA vuông tại B, tam giác SAC vuông tại C. Biết góc giữa hai mặt phẳng (SAB) và (ABC) bằng 60 0 . Tính khoảng cách từ điểm C đến mặt phẳng (SAB).
Chọn đáp án B
Gọi là H hình chiếu của đỉnh S xuống mặt phẳng (ABC). Khi đó, ta có
Ta có
Tương tự, ta cũng chứng minh được
Từ đó suy ra
Do SH ⊥ AB, BH ⊥ AB nên suy ra góc giữa (SAB) và (ABC) là góc SBH. Vậy SBH = 60 0
Trong tam giác vuông ABH, ta có
Trong tam giác vuông SHB, ta có
Cho hình chóp S.ABC có đáy là tam giác ABC vuông cân tại B, AB = a, tam giác SAC cân tại S và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp S.ABC biết góc giữa SB và mặt phẳng (ABC) bằng 450.
A. a 3 3 4
B. a 3 3 12
C. a 3 2 12
D. a 3 2 4
Đáp án C
Gọi H là trung điểm AC. Ta có tam giác SAC cân tại S và nằm trong mặt phẳng vuông góc với (ABC)
suy ra S H ⊥ A B C
Ta có
S B , A B C = S B H ^ = 45 o ⇒ S H = B H = 1 2 A C = a 2 2 V S . A B C = 1 3 . a 2 2 . 1 2 a 2 = a 3 2 12
Cho hình chóp S.ABC có đáy là tam giác ABC vuông cân tại B, AB = a, tam giác SAC cân tại S và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp S.ABC biết góc giữa SB và mặt phẳng (ABC) bằng 450
A. a 3 3 4
B. a 3 3 12
C. a 3 2 12
D. a 3 2 4
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, đỉnh S cách đều các điểm A,B,C. Biết AC = 2a,BC = a; góc giữa đường thẳng SB và mặt đáy (ABC) bằng 60 o . Tính theo a thể tích V của khối chóp S.ABC?
A. V = a 6 3 4 .
B. V = a 6 3 6 .
C. V = a 3 2 .
D. V = a 6 3 12 .
Đáp án C.
Hướng dẫn giải: Gọi H là trung điểm AC.
Do tam giác ABC vuông tại B nên H là tâm đường tròn ngoại tiếp tam giác ABC.
Đỉnh S cách đều các điểm A, B,C nên hình chiếu của S trên mặt đáy (ABC) trùng với tâm đường tròn ngoại tiếp tam giác ABC
suy ra S H ⊥ ( A B C )
Tam giác vuông SBH, có
Tam giác vuông ABC ,
có A B = A C 2 - B C 2 = a 3
Diện tích tam giác vuông
S ∆ A B C = 1 2 B A . B C = a 3 2 2
Vậy V S . A B C = 1 3 S ∆ A B C . S H = a 3 2
Cho hình chóp S. ABC có đáy ABC là tam giác vuông cân tại B. Biết AB = BC = a 3 , S A B ^ = S B C ^ = 90 0 và khoảng cách từ A đến mặt phẳng (SBC) bằng a 2 Tính diện tích mặt cầu ngoại tiếp hình chóp S. ABC.
A. 16 πa 2
B. 12 πa 2
C. 8 πa 2
D. 2 πa 2
Cho hình chóp S. ABC có đáy ABC là tam giác đều cạnh bằng a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy, SC hợp với đáy một góc 300, M là trung điểm của AC. Tính thể tích khối chóp S. BCM.
A. 3 a 3 48
B. 3 a 3 16
C. 3 a 3 96
D. 3 a 3 24
Chọn A
Gọi H là trung điểm của AB. Theo bài ra:
Xét tam giác SCH ta có:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB = a,
BC = a 3 . Biết thể tích khối chóp bằng a 3 3 . Khoảng cách từ điểm S
đến mặt phẳng (ABC) bằng
Cho khối chóp S. ABC , có mặt bên SAB là tam giác vuông cân tại S có SA = 3 cm và mặt bên SAB vuông góc với mặt đáy ABC . Mặt đáy là ΔABC vuông cân tại A. Tính khối chóp S. ABC.