Cho hình lập phương ABCD.A’B’C’D’. Gọi M là trung điểm CD. Cosin của góc giữa AC và C’M là:
A. 0.
B. 2 2 .
C. 1 2 .
D. 10 10 .
Cho hình lập phương ABCD.A’B’C’D’. Gọi M là trung điểm CD. Cosin của góc giữa AC và C’M là:
B. 2 2 .
C. 1 2 .
D. 10 10 .
Đáp án D
Giả sử hình lập phương có cạnh là 1.
A ' C // A C ⇒ A C , C ' M ^ = A ' C ' , C ' M ^
Xét Δ A ' C ' M ' có:
A ' C ' = 2 , C ' M = 1 2 + 1 2 2 = 5 2 , A ' M = A ' D 2 + M D 2 = 2 + 1 4 = 3 2
Định lí Cô sin: a 2 = b 2 + c 2 − 2 b c cos A ⇒ cos A = b 2 + c 2 − a 2 2 b c ta được: cos A C , C ' M ^ = 1 10 .
Cho hình lập phương ABCD.A’B’C’D’. Gọi M là trung điểm của DD’ (tham khảo hình vẽ dưới đây). Tính cosin của góc giữa hai đường thẳng B’C và C’M.
A. 1 3
B. 1 10
C. 1 3
D. 2 2 9
Cho hình lập phương ABCD.A’B’C’D’. Gọi M,N,P lần lượt là trung điểm của các cạnh AB, AD, C’D’. Tính cosin góc giữa hai đường thẳng MN và CP
Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng 2. Gọi M,N lần lượt là trung điểm các cạnh A’B’ và A’D’(tham khảo hình vẽ). Cosin của góc tạo bởi hai mặt phẳng (CMN) và (AB’D’) bằng
A. 3 51 102
B. 51 102
C. 2 51 51
D. 51 51
Cho hình lập phương ABCD.A’B’C’D’. Gọi M, N lần lượt là trung điểm của AA’ và CD. Góc giữa hai đường thẳng BM và C’N bằng:
A. 45 0
B. 30 0
C. 60 0
D. 90 0
Đáp án D
Gọi E là trung điểm A’B’. Khi đó ANC’E là hình bình hành. Suy ra C’N song song với AE. Như vậy góc giữa hai đường thẳng BM và C’N bằng góc giữa hai đường thẳng BM và AE. Ta có Δ M A B = Δ E A ’ A c − g − c suy ra A ' A E ^ = A B M ^ (hai góc tương ứng).
Do đó: A ' A E ^ + B M A ^ = A B M ^ + B M A ^ = 90 0 . Suy ra hai đường thẳng BM và AE vuông góc với nhau nên góc gữa chúng bằng 90 0 . Vậy góc giữa hai đường thẳng BM và C’N bằng 90 0 .
Cho hình lập phương ABCD.A’B’C’D’. Gọi M, N lần lượt là trung điểm của AA’ và CD. Góc giữa hai đường thẳng BM và C’N bằng:
A. 45 0
B. 30 0
C. 60 0
D. 90 0
Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng 1. Gọi M, N lần lượt là trung điểm của AB và CD. Tính khoảng cách giữa hai đường thẳng A’C và MN.
Cho hình lập phương A B C D . A ' B ' C ' D ' . Gọi M, N lần lượt là trung điểm của AD, BB'. Cosin của góc hợp bởi MN và AC' bằng
A. 2 3
B. 3 3
C. 5 3
D. 2 4
Gọi cạnh của hình lập phương là a.
Suy ra
Cách 2. Gọi độ dài cạnh hình lập phương A B C D . A ' B ' C ' D ' là
Chọn hệ trục tọa độ Oxyz sao cho
Khi đó, tọa độ các đỉnh:
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AA' = 2a, AD = 4a. Gọi M là trung điểm của cạnh AD. Tính khoảng cách d từ giữa hai đường thẳng A’B’ và C’M
A . d = 2 a 2
B . d = a 2
C . d = 2 a
D . d = 3 a