Tập thơ Lưu hương kí được phát hiện năm bao nhiêu?
A. 1963
B. 1964
C. 1965
D. 1966
1963+1964+1965+1966+1967+.......+2021+2022+2023
1963+1964+1965+1966+1967+.......+2021+2022+2023
Gọi A = 1963+1964+1965+1966+1967+.......+2021+2022+2023
Số số hạng của S là:
\(\dfrac{2023-1963}{1}+1=71\left(\text{Số số hạng}\right)\)
Tổng của A là:
\(\dfrac{\left(2023+1963\right).71}{2}=141503\)
Vậy tổng của 1963+1964+1965+1966+1967+...+2021+2022+2023+2024 = 141503
chứng minh rằng 1961^1962+1963^1964+1965^1966+2:7
chứng minh 1961^1962+1963^1964+1965^1966+2 chia hết cho 7
CMR \(1961^{1962}+1963^{1964}+1965^{1966}+5\) chia hết cho 7
Sửa đề: \(1961^{1962}+1963^{1964}+1965^{1966}+2\) chia hết cho 7
Ta có:
\(1961\text{≡}\left(mod7\right)\Rightarrow1961^{1962}\text{≡}1\left(mod7\right)\left(I\right)\)
Ta có:
\(3^6\text{≡}1\left(mod7\right)\Rightarrow\left(3^6\right)^{327}\text{≡}1\left(mod7\right)\)
\(\Rightarrow9.\left(3^6\right)^{327}\text{≡}9\text{≡}2\left(mod7\right)\Rightarrow3^{1964}\text{≡}2\left(mod7\right)\)
Mà \(1963\text{≡}3\left(mod7\right)\Rightarrow1963^{1964}\text{≡}3^{1964}\text{≡}2\left(mod7\right)\left(II\right)\)
Ta có:
\(1965\text{≡}5\left(mod7\right)\Rightarrow1965^{1966}\text{≡}5^{1966}\left(mod7\right)\)
Mà ta lại có: \(\hept{\begin{cases}5^6\text{≡}1\left(mod7\right)\\5^4\text{≡}2\left(mod7\right)\end{cases}\Rightarrow}\left(5^6\right)^{327}.5^4=5^{1966}\text{≡}2\left(mod7\right)\)
\(\Rightarrow1965^{1966}\text{≡}5^{1966}\text{≡}2\left(mod7\right)\left(III\right)\)
Từ (I), (II), (III) thì ra suy ra:
\(\left(1961^{1962}+1963^{1964}+1965^{1966}+2\right)\text{≡}\left(1+2+2+2\right)\left(mod7\right)\)
Hay \(\left(1961^{1962}+1963^{1964}+1965^{1966}+2\right)\text{≡}7\text{≡}0\left(mod7\right)\)
Vậy \(1961^{1962}+1963^{1964}+1965^{1966}+2\) chia hết cho 7
Ta có 1961 ≡ 1(mod 7) nên 1961^1962 ≡ 1 (mod 7) có 1963 ≡ 3 (mod 7) nên 1963^1964 ≡ 3^1964 = (3^6)^327.3^2 = 9.(3^6)^327 ≡ 9 (mod 7) vì 3^6 ≡ 1(mod 7) nên (3^6)^327 ≡ 1(mod 7) Ta cũng có 1995 ≡ 5(mod 7) nên 1995^1996 ≡ 5^1996 = (5^6)^332.5^4 ≡ 2.1 = 2(mod 7) do 5^6 ≡ 1(mod 7) và 5^4 ≡ 2 (mod7) Cộng lại ta có S ≡ 14 ≡ 0 (mod 7) Hay ta có đpcm
dài quá chỉ cần dựa vào tính chất chia cho7 và chữ số tận cùng của biểu thức là đươc có hiểu ko
nêu hiểu thì đúng cho mình nha
Chứng minh 19611962+19631964+19651966+2 chia hết cho 7.
Bạn học đồng dư thức chưa?
Ta có 1961 ≡ 1(mod 7) nên 1961^1962 ≡ 1 (mod 7)
có 1963 ≡ 3 (mod 7) nên 1963^1964 ≡ 3^1964 = (3^6)^327.3^2 = 9.(3^6)^327 ≡ 9 (mod 7)
vì 3^6 ≡ 1(mod 7) nên (3^6)^327 ≡ 1(mod 7)
Ta cũng có 1995 ≡ 5(mod 7) nên 1995^1996 ≡ 5^1996 = (5^6)^332.5^4 ≡ 2.1 = 2(mod 7)
do 5^6 ≡ 1(mod 7) và 5^4 ≡ 2 (mod7)
Cộng lại ta có S ≡ 14 ≡ 0 (mod 7)
Hay ta có đpcm
chứng minh 19611962 + 19631964 + 19651966 +2 chia hết cho 7
Ta có 1961 ≡ 1(mod 7) nên 1961^1962 ≡ 1 (mod 7)
có 1963 ≡ 3 (mod 7) nên 1963^1964 ≡ 3^1964 = (3^6)^327.3^2 = 9.(3^6)^327 ≡ 9 (mod 7)
vì 3^6 ≡ 1(mod 7) nên (3^6)^327 ≡ 1(mod 7)
Ta cũng có 1995 ≡ 5(mod 7) nên 1995^1996 ≡ 5^1996 = (5^6)^332.5^4 ≡ 2.1 = 2(mod 7)
do 5^6 ≡ 1(mod 7) và 5^4 ≡ 2 (mod7)
Cộng lại ta có S ≡ 14 ≡ 0 (mod 7)
tìm số dư trong phép chia sau
a,2222^55555+5555^2222/10 va /7
b,1961^1962+1963^1964+1965^1966+2/7
giải bằng số đồng dư
chứng minh rằng:
1961^1962+1963^1964+1965^1966+2 chia hết cho 7
làm giúp mìh theo cách đồng dư nka!:)
Ta có 1961 ≡ 1(mod 7) nên 1961^1962 ≡ 1 (mod 7)
có 1963 ≡ 3 (mod 7) nên 1963^1964 ≡ 3^1964 = (3^6)^327.3^2 = 9.(3^6)^327 ≡ 9 (mod 7)
vì 3^6 ≡ 1(mod 7) nên (3^6)^327 ≡ 1(mod 7)
Ta cũng có 1995 ≡ 5(mod 7) nên 1995^1996 ≡ 5^1996 = (5^6)^332.5^4 ≡ 2.1 = 2(mod 7)
do 5^6 ≡ 1(mod 7) và 5^4 ≡ 2 (mod7)
Cộng lại ta có S ≡ 14 ≡ 0 (mod 7)
Hay ta có đpcm
Ta có 1961 ≡ 1(mod 7) nên 1961^1962 ≡ 1 (mod 7)
có 1963 ≡ 3 (mod 7) nên 1963^1964 ≡ 3^1964 = (3^6)^327.3^2 = 9.(3^6)^327 ≡ 9 (mod 7)
vì 3^6 ≡ 1(mod 7) nên (3^6)^327 ≡ 1(mod 7)
Ta cũng có 1995 ≡ 5(mod 7) nên 1995^1996 ≡ 5^1996 = (5^6)^332.5^4 ≡ 2.1 = 2(mod 7)
do 5^6 ≡ 1(mod 7) và 5^4 ≡ 2 (mod7)
Cộng lại ta có S ≡ 14 ≡ 0 (mod 7)
Hay ta có đpcm
Bài 6:CMR:A=1961^1962+1963^1964+1965^1966+2 chia hết cho 7
Bài 7:CMR:2222^5555+5555^2222 chia hết cho 7