Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phương Uyên
Xem chi tiết
Eternal friendship
15 tháng 12 2017 lúc 16:45

Ta có: A= 2 + 2+ 2+ ... + 260= (2 +22) + (23+ 24) + ... + (259 + 260).

             = 2 x (2 + 1) + 2x (2 + 1) + ... + 259 x (2 + 1).

             = 2 x 3 + 23 x 3 + ... + 259 x 3.

             = 3 x ( 2 + 23 + ... + 259).

Vì A = 3 x ( 2 + 23 + ... + 259)  nên A chia hết cho 3.

           A= (2 +2+ 23) + (2+ 2 + 26) + ... + (258 + 259 + 260).

             = 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).

             = 2 x 7 + 24 x 7 + ... + 258 x 7.

             = 7 x ( 2 + 24 + ... + 258).

Vì A = 7 x ( 2 + 24 + ... + 258)  nên A chia hết cho 7.

  A= (2 +2+ 2+ 24) + (2+ 2 + 2+ 28) + ... + (257 + 258 + 259 + 260).

             = 2 x (1 + 2 + 2+ 23) + 25 x (1 + 2 + 2+ 23) + ... + 257 x (1 + 2 + 2+ 23).

             = 2 x 15 + 25 x 15 + ... + 257 x 15.

             = 15 x ( 2 + 24 + ... + 258).

Vì A = 15 x ( 2 + 24 + ... + 258)  nên A chia hết cho 15.

Ta có: B= 3 + 3+ 3+ ... + 31991= (3 + 3+ 35) + (37+ 3+ 311 ) + ... + (31987 + 31989 + 31991).

             = 3 x (1 + 3+ 34) + 37 x (1 + 3+ 34) + ... + 31987 x (1 + 3+ 34).

             = 3 x 91 + 37 x 91 + ... + 31987 x 91= 3 x 7 x 13 + 3 x 7 x 13 + ... + 31987 x 7 x 13.

             = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7).

Vì B = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7) nên B chia hết cho 13.

           B= (3 + 3+ 3+ 37) +  ... + (31985 + 31987 + 31989 + 31991).

             = 3 x (1 + 3+ 3 + 36) +  ... + 31985 x (1 + 3+ 3​+ 36).

             = 3 x 820 + ... + 31985 x 820= 3 x 20 x 41 + ... + 31985 x 20 x 41.

             = 41 x ( 3 x 20 + .. +  31985 x 20)

Vì B =41 x ( 3 x 20 + .. +  31985 x 20) nên B chia hết cho 41.

     
Ad
14 tháng 10 2018 lúc 8:47

a) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)

\(=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+...+\left(3^{1987}+3^{1989}+3^{1991}\right)\)

\(=3\times\left(1+3^2+3^4\right)+3^7\times\left(1+3^2+3^4\right)+...+3^{1987}\times\left(1+3^2+3^4\right)\)

\(=3\times91+3^7\times91+...+3^{1987}\times91\)

\(=3\times7\times13+3^7\times7\times13+...+3^{1987}\times7\times13\)

\(=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)

Vì \(A=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)nên A chia hết cho 13.

b) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)

\(=\left(3+3^3+3^5+3^7\right)+...+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)\)

\(=3\times\left(1+3^2+3^4+3^6\right)+...+3^{1985}\times\left(1+3^2+3^4+3^6\right)\)

\(=3\times820+...+3^{1985}\times820\)

\(=3\times20\times41+...+3^{1985}\times20\times41\)

\(=41\times\left(3\times20+...+3^{1985}\times20\right)\)

Vì \(A=41\times\left(3\times20+...+3^{1985}\times20\right)\)nên A chia hết cho 41.

Đỗ quyết Tiến
22 tháng 2 lúc 20:01

Đcm

 

Nguyễn Thị Kim Anh
Xem chi tiết
kurosaki ichigo
3 tháng 10 2015 lúc 18:09

A={2+2^2}+{2^3+2^4}+.......+{2^59+2^60}

={2.1+2.2}+{2^3.1+2^3.2}+....+{2^59.1+2^59.2}

=2{1+2}+2^3{1+2}+...+2^59{1+2}

=2.3+2^3.3+.....+2^59.3

=3.(2+2^3+...+2^59)

vi co thua so 3 => tich do chia het cho 3

Nguyễn Trọng Phúc
12 tháng 10 2022 lúc 20:40

A={2+2^2}+{2^3+2^4}+.......+{2^59+2^60}

={2.1+2.2}+{2^3.1+2^3.2}+....+{2^59.1+2^59.2}

=2{1+2}+2^3{1+2}+...+2^59{1+2}

=2.3+2^3.3+.....+2^59.3

=3.(2+2^3+...+2^59)

vi co thua so 3 => tich do chia het cho 3

Lưu Dung
Xem chi tiết
Uzimaru Naruto
12 tháng 1 2017 lúc 16:56

Bài 1 :

chứng minh A = 2 + 2^2 + 2^3 + ........... + 2^2009 + 2^2010 chia hết 42

ta thấy 42 = 2 x 3 x  7

A chia hết 42 suy ra A phải chia hết cho 2;3;7

mà ta thấy tổng trên chia hết cho 2 suy ra A chia hết cho 2  (1)

số số hạng ở tổng A là : ( 2010 - 1 ) : 1 + 1 = 2010 ( số )

ta chia tổng trên thành các nhóm mỗi nhóm 2 số ta được số nhóm là : 2010 : 2 = 1005 ( nhóm )

suy ra A = ( 2 + 2^2 ) + ( 2^3 + 2^4 ) + ...............+ ( 2^2009 + 2^2010 )

A = 2 x ( 1 + 2 ) + 2^3 x ( 1 + 2 ) + ................. + 2^2009 x ( 1 + 2 )

A = 2 x 3 + 2^3 x 3 + ............. + 2^2009 x 3 

A = 3 x ( 2 + 2^3 + ........... + 2^2009 ) chia hết cho 3 

suy ra A chia hết cho 3 ( 2 )

ta chia nhóm trên thành các nhóm mỗi nhóm 3 số ta có số nhóm là : 2010 : 3 = 670 ( nhóm )

suy ra A = ( 2 + 2^2 + 2^3 ) + ( 2^4 + 2^5 + 2^6 ) + ................. + ( 2^2008 + 2^2009 + 2^2010 )

A = 2 x ( 1 + 2 + 2^2 ) + 2^4 x ( 1 + 2 + 2^2 ) + .................. + 2^2008 x ( 1 + 2 + 2^2 )

A = 2 x ( 1 + 2 + 4 ) + 2^4 x ( 1 + 2 + 4 ) + ................ + 2^2008 x ( 1 + 2 + 4 )

A = 2 x 7 + 2^4 x 7 + ............. + 2^2008 x 7

A = 7 x ( 1 + 2^4 + ........ + 2^2008 ) chia hết cho 7 

suy ra A chia hết cho 7 (3)

từ (1) ; (2) và (3) suy ra A chia hết cho 2;3;7 

suy ra A chia hết cho 42 ( điều phải chứng minh )

Trần Gia Hân
Xem chi tiết
Trịnh Tiến Đức
6 tháng 10 2015 lúc 12:37

A=2+22+23+...+260

= ( 2+22)+(23+24)+...+(259+260)

= 2. 3 + 23.3+...+259.3

= 3.( 2+23+...+259) chia het cho 3

=> A chia het cho 3

Kinomoto Sakura
6 tháng 10 2015 lúc 12:39

A = (2 +22) + (23+24) + ....... + (259 + 260)

   = 2(1+2) + 23(1+2) + ... + 259(1+2)

   = 2. 3 + 23 . 3 + .... + 259 x 3

   = 3(2 + 23 + .... + 259 ) chia hết cho 3

 

Trịnh Khánh Huyền
Xem chi tiết
kagamine rin len
27 tháng 11 2015 lúc 11:41

A=2+2^2+2^3+...+2^60

=(2+2^2)+(2^3+2^4)+...+(2^59+2^60)

=2(1+2)+2^3(1+2)+...+2^59(1+2)

=3(2+2^3+...+2^59) chia hết cho 3

A=2+2^2+2^3+...+2^60

=(2+2^2+2^3)+...+(2^58+2^59+2^60)

=2(1+2+2^2)+...+2^58(1+2+2^2)

=7(2+...+2^58) chia hết cho 7

A=2+2^2+2^3+...+2^60

=(2+2^2+2^3+2^4)+...+(2^57+2^58+2^59+2^60)

=2(1+2+2^2+2^3)+...+2^57(1+2+2^2+2^3)

=15(2+...+2^57) chia hết cho 15

 

Nguyễn Hà Ngân
Xem chi tiết
Mikoshiba Mikoto
16 tháng 7 2016 lúc 15:45

a.    A= 2+22+23+......+260

= 2+ (22+23)+(24+25)+......+(258+259)+260

=2+2(2+22)+23(2+22)+......+257(2+22)+260

=2+(2+22)(2+23......+257)+260

=2+ 6(2+2^3+......+2^57)+260 => cả 23 số hạng đều chia hết cho 2 => tổng chia hết cho 2 => a chia hết cho 2

b. A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+.........+(2^57+2^58+2^59+2^60)

=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+......+2^57(1+2+2^2+2^3)

=2.15 +2^5.15+...........+2^57.15 = 15 (2+2^5+...........+2^57) => 15 chia hết cho 3 => A chia hết cho 3

k đúng cho mình nha!!!!

soyeon_Tiểu bàng giải
16 tháng 7 2016 lúc 15:28

a. Do 2; 22; 23; ...; 260 chia hết cho 2

=> A chia hết cho 2 ( đpcm)

b. A = 2 + 22 + 23 + ... + 260 ( có 60 số; 60 chia hết cho 2)

A = (2 + 22) + (23 + 24) + ... + (259 + 260)

A = 2.(1 + 2) + 23.(1 + 2) + ... + 259.(1 + 2)

A = 2.3 + 23.3 + ... + 259.3

A = 3.(2 + 23 + ... + 259) chia hết cho 3

=> A chia hết cho 3 ( đpcm)

soái cưa Vương Nguyên
16 tháng 7 2016 lúc 15:34

A=2+(22+23)+(24+25)+...+(259+260)

  =2+2.22+2.24+...+2.259

  =2+2.(22+24+...+259) chia hết cho 2

Vậy A chia hết cho 2

phần b lm tương tự nhé mik ko có thời gian lm tiếp

tích cho mik nha

  

Nguyễn Bảo Châu
Xem chi tiết
✎✰ ๖ۣۜLαɗσηηα ༣✰✍
25 tháng 3 2020 lúc 21:23

a) Ta có: \(\overline{abcdeg}=\overline{ab}.1000+\overline{cd}.100+\overline{eg}\)

                               \(=\overline{ab}.999+\overline{cd}.99+\overline{ab}+\overline{cd}+\overline{eg}\)

                               \(=\left(\overline{ab}.999+\overline{cd}.99\right)+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)

Vì \(\left(\overline{ab}.999+\overline{cd}.99\right)⋮11\)

và \(\left(\overline{ab}+\overline{cd}+\overline{cd}\right)⋮11\left(gt\right)\)

\(\Rightarrow\overline{abcdeg}⋮11\left(đpcm\right)\)

b) \(\cdot A=2+2^2+2^3+...+2^{60}\)

\(A=\left(2+2^2\right)+...+\left(2^{50}+2^{60}\right)\)

\(A=2.3+...+2^{50}.3\)

\(A=3\left(2+..+2^{50}\right)⋮3\)

các trường hợp còn lại tự lm nhé!!

Khách vãng lai đã xóa
nguyễn thị lan
Xem chi tiết
Hoàng Thị Thanh Phương
12 tháng 8 2015 lúc 10:31

a)$10^{28}$1028 chia 9 dư 1 

8 chia 9 dư 8

1 + 8 = 9 chia hết cho 9

$\Rightarrow$⇒$10^{28}+8$1028+8 chia hết cho 9 (1)

$10^{28}$1028 chia hết cho 8 (vì có 3 chữ số tận cùng là 000 chia hết cho 8)

8 chia hết cho 8

$\Rightarrow$⇒$10^{28}+8$1028+8 chia hết cho 8 (2)

Từ (1) và (2) kết hợp với ƯCLN (8,9) = 1 . Suy ra $10^{28}+8$1028+8 chia hết cho 72

b)$8^8+2^{20}=\left(2^3\right)^8+2^{20}=2^{24}+2^{20}=2^{20}\times\left(2^4+1\right)=2^{20}\times17$88+220=(23)8+220=224+220=220×(24+1)=220×17 chia hết cho 17

Vũ Hà  Thư
Xem chi tiết