so sánh : A=\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}\)với 10
Cho A = \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}\)
So sánh A với 10.
So sánh A với 10 biết\(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}\)
so sánh : A=$\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}$1√1 +1√2 +...+1√100 với 10. Trình bày cách giải nha bạn
A=\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+..................................................+\frac{1}{\sqrt{100}}\)
Hãy so sánh A với 10
A > 10
Tik cho mk nha..........cảm ơn rất nhiều
so sánh $\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}$ với 10. Trình bày cách giải nha bạn
Cho \(M=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}.\)So sánh M với 10
\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{10}};\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{10}};...;\frac{1}{\sqrt{9}}>\frac{1}{\sqrt{10}};\frac{1}{\sqrt{10}}=\frac{1}{\sqrt{10}}\)
=>M>10
So sánh \(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}\) với \(10\)
A \(=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{100}}\)
A > \(\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+....+\frac{1}{\sqrt{100}}\) (có 100 số hạng \(\frac{1}{\sqrt{100}}\))
= \(\frac{1}{\sqrt{100}}.100=\frac{100}{\sqrt{100}}=\frac{100}{10}=10\)
Vậy A > 10
So sánh \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}...+\frac{1}{\sqrt{100}}\) và 10
Ta có: \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}\)
..........
..........
..........
\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)
\(\Rightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}.100=\frac{100}{10}=10\)
Vậy \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>10\)
So sánh \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+.....+\frac{1}{\sqrt{100}}\) với 10
Ta có:
\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)
\(...........\)
\(\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)
\(\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\).
Cộng theo vế ta có:
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}>\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}=\frac{100}{10}=10\)
1/√1 > 1/√100 = 1/10
1/√2 > 1/√100 = 1/10
..............................
1/√99 > 1/√100 = 1/10
Cộng vế với vế của 99 bất đẳng thức trên ta đc:
1/√1 + 1/√2 + ... + 1/√99 > 99.1/10 = 99/10
=> A = 1/√1 + 1/√2 + ... + 1/√99 + 1/√100 > 99/10 + 1/10 = 100/10 = 10
tk nha bạn
thank you bạn
(^_^)