Chứng minh rằng tích của ba số tự nhiên liên tiếp thì chia hết cho 3
Chứng minh rằng:
a)Tích của hai số tự nhiên liên tiếp thì chia hết cho 2
b)Tích của ba số tự nhiên liên tiếp thì chia hết cho 3
a ) vì 2 số tự nhiên liên tiếp nhau sẽ có một số chẵn và một số lẽ ( Ví dụ : 2 và 3 _ 7 và 8_12345 và 12346 )
và tích của một số chẵn và một số lẽ phải là một số chẵn ( Ví dụ : 2 x 3 = 6_ 7 x 8 = 56 ........)
mà một số chẵn thì luôn luôn chia hết cho 2
suy ra : tích của hai số tự nhiên liên tiếp nhau chia hết cho 2 ( điều phài chứng minh )
a, bởi vì trong 2 số tự nhiên liên tiếp thì chắc chắn có 1 số chẵn => chia hết cho 2.
1 cho abc-deg chia hết cjo 7
a, chứng minh rằng abcdeg chia hết 7
2 a, chứng minh rằng ; Tích của ba số tự nhiên liên tiếp thì chia hết cho 3 và cho 2
b, chứng minh ; Tích của 4 số tự nhiên liên tiếp luôn chia hết cho 4
c, chứng minh (n+3).(n+4).(2n+7) chia hết cho 3
chứng tỏ rằng :
a) tổng của ba số tự nhiên liên tiếp là một số chia hết cho 3
b) tổng của bốn số tự nhiên liên tiếp là một số không chia hết cho 4
c) tích của hai số tự nhiên liên tiếp thì chia hết cho 2
d) tích của ba số tự nhiên liên tiếp luôn chia hết cho 3
cứu mình
a, Gọi 3 số tự nhiên liên tiếp là n; n+1 và n+2
Tổng chúng: n+(n+1)+(n+2)= 3n+3\(⋮\) 3 \(\forall n\in N\) (đpcm)
b, Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3
Tổng chúng: \(n+\left(n+1\right)+\left(n+2\right)+\left(n+3\right)=4n+6⋮̸4\forall n\in N\left(Vì:4n⋮4;6⋮̸4\right)\left(đpcm\right)\)
c, Hai số tự nhiên liên tiếp là k và k+1
Tích chúng: k(k+1) . Nếu k chẵn thì k+1 lẻ => Tích chẵn, chia hết cho 2
Nếu k lẻ thì k+1 chẵn => Tích chẵn, chia hết cho 2
(ĐPCM)
d, Ba số tự nhiên liên tiếp là m;m+1 và m+2
Tích chúng: m(m+1)(m+2)
+) TH1: Nếu m chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH2: Nếu m chia 3 dư 1 => m+2 chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH3: Nếu m chia 3 dư 2 => m+1 chia hết cho 3 => Tích 3 số chia hết cho 3
=> Kết luận: Tích 3 số tự nhiên liên tiếp chia hết cho 3 (đpcm)
a: Gọi ba số liên tiếp là a;a+1;a+2
a+a+1+a+2=3a+3=3(a+1) chia hết cho 3
b: Gọi 4 số liên tiếp là a;a+1;a+2;a+3
a+a+1+a+2+a+3
=4a+6
=4a+4+2
=4(a+1)+2 ko chia hết cho 4
c: Hai số liên tiếp thì luôn có 1 số chẵn, 1 số lẻ
=>Hai số liên tiếp khi nhân với nhau sẽ chia hết cho 2
d: Ba số liên tiếp thì chắc chắn sẽ có 1 số chia hết cho 3
=>Ba số liên tiếp khi nhân với nhau sẽ chia hết cho 3
Chứng minh rằng:
Tích của ba số tự nhiên liên tiếp thì chia hết cho 3
đéo bt nha bn có lm thì mới có ăn ko lm mà đòi có ăn thì ăn cứt ăn đầu bùi nha bn
chứng minh rằng tổng của ba số tự nhiên liên tiếp thì chia hết cho 3, còn tỏng của bốn số tự nhiên liên tiếp thì không chia hết cho 4?
Gọi 3 stn liên tiếp là a; a+1; a+2.
Ta có:
a + (a+1) + (a+2) = a + a + 1 + a + 2 = 3a + 3 = 3.(a+1) chia hết cho 3.
Gọi 4 stn liên tiếp là a; a+1; a+2; a+3.
Ta có:
a + (a+1) + (a+2) + (a+3) = a+a+1+a+2+a+3=4a+6=4a+4+2=4.(a+1)+2 chia 4 dư 2 nên không chia hết cho 4
Vậy...
Gọi 3 số tự nhiên liên tiếp là 3k,3k+1,3k+2
Tổng 3 số là: 3k+3k+1+3k+2=9k+3 chia hết cho 3
Gọi 4 số tự nhiên liên tiếp là 4k,4k+1,4k+2,4k+3
Tổng 4 số là: 4k+4k+1+4k+2+4k+3=12k+6 ko chia hết cho 4
gọi số thứ nhất là a; số thứ 2 là a+1; số thứ 3 là a+2
Ta có: a+(a+1)+(a+2)
=(a+a+a)+(1+2)
=3a+3
3a chia hết cho 3, 3 chia hết cho 3
==>> 3 số tự nhiên liên tiếp chia hết cho 3
gọi số thứ nhất là a; số thứ 2 là a+1; số thứ 3 là a+3; số thứ 4 là a+4
Ta có: a+(a+1)+(a+2)+(a+3)+(a+4)
=(a+a+a+a)+(1+2+3+4)
= 4a + 4
4a chia hết cho 4; 4 chia hết cho 4
==>> 4 số tự nhiên liên tiếp chia hết cho 4
Đúng 100% lun. Tick mk nka!!!!!!!!!!!!!!
chứng minh rằng :
tích của hai số tự nhiên liên tiếp thì chia hết cho 2
b) tích của 3 số tự nhiên liên tiếp thì chia hết cho 3
Ta có trong hai số tự nhiên liện tiếp thì lúc nào cũng có một số chẵn và một số lẻ số chẵn đó sẽ chia hết cho 2 (đpcm)
b, 3 số tự nhiên liên tiếp sẽ có dangh 3k;3k+1;3k+2(với k thuộc N)
Tích của 3 số đó là : 3k + 3k+1 +3k +2 = 3.(3k+3) chia hết cho 3( đpcm)
a)Gọi 2 số tự nhiên liên tiếp đó là a và b
Do là 2 STN liên tiếp nên a hoặc b sẽ là số chẵn
=> ab chia hết cho 2
Vậy.............................
b) Gọi 3 số tự nhiên liên tiếp là 3k; 3k+1; 3k+2 ( k \(\in\) N)
Mà 3k luôn chia hết cho 3
=> 3k(3k+1)(3k+2) luôn chia hết cho 3
Vậy......................................
Gọi 2 số tự nguyên liên tiếp là: a và a+1
Tích của chúng là: A = a(a+1)
Nếu: a = 2k thì A chia hết cho 2 Nếu: a = 2k+1 thì: a+1 = 2k+2 chia hết cho 2 => A chia hết cho 2=> đpcm
Chứng minh rằng:
a)Tích của hai số tự nhiên liên tiếp thì chia hết cho 2.
b) Tích của 3 số tự nhiên liên tiếp thì chia hết cho 3.
a . Ta có : Vì hai số liên tiếp chiaheets cho 2
=> số lẻ x số chẵn sẽ chia hết cho 2
vì 1 số chẵn x bất kì số nào cũng là số chẵn
Gọi 2 số nguyên liên tiếp là: a và a+1
Tích của chúng là: A = a(a+1)
Nếu: a = 2k thì A chia hết cho 2 Nếu: a = 2k+1 thì: a+1 = 2k+2 chia hết cho 2 => A chia hết cho 2=> đpcm
Chứng minh rằng:
a) Tích của 2 số tự nhiên liên tiếp thì chia hết cho 2
b) Tích của 3 số tự nhiên liên tiếp thì chia hết cho 3
a) Gọi 2 số tự nhiện liên tiếp là n; n+1
Ta có:
Nếu n có dạng 2k thì n.(n+1)
= 2k.(2k+1) chia hết cho 2 (vì 2k chia hết cho 2)
Nếu n có dạng 2k + 1 thì n.(n+1)
= (2k+1).(2k+1+1)
= (2k+1).(2k+2) chia hết cho 2 (vì 2k+2 chia hết cho 2)
b) Gọi 3 số tự nhiên liên tiếp là n;n+1;n+2
Ta có:
Nếu n có dạng 3k thì n.(n+1).(n+2)
= 3k.(3k+1).(3k+2) chia hết cho 3 (vì 3k chia hết cho 3)
Nếu n có dạng 3k+1 thì n.(n+1).(n+2)
= (3k+1).(3k+1+1).(3k+2+1)
= (3k+1).(3k+2).(3k+3) chia hết cho 3 vì (3k+3 chia hết cho 3)
Nếu n có dạng 3k+2 thì n.(n+1).(n+2)
= (3k+2).(3k+2+1).(3k+2+2)
= (3k+2).(3k+3).(3k+4) chia hết cho 3 (vì 3k+3 chia hết cho 3)
a) chứng minh rằng trong ba số tự nhiên liên tiếp chắc chắc chắn có một số chia hết cho 2 và một số chia hết cho 36
b) chứng minh rằng tích của ba số tự nhiên liên tiếp chia hết cho