cho a,b là 2 số tự nhiên liên tiếp,c=a*b
chứng minh rằng p=a2+b2+c2là sood chính phương lẻ
cho A = a2 + b2 + c2 ; trong đó a,b là hai số tự nhiên liên tiếp và c = a.b. Chứng minh rằng: căn A là một số tự nhiên lẻ.
1.Chứng minh tích của 4 số tự nhiên liên tiếp không là số chính phương
2.Chứng minh tích của 4 số tự nhiên liên tiếp cộng 1 là số chính phương
3.Chứng minh tích của 4 số tự nhiên chẵn liên tiếp cộng 16 là số chính phương
4.Chứng minh tích của 4 số tự nhiên lẻ liên tiếp cộng 16 là số chính phương
2.
Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x\(\in\) N)
Ta có : x (x+1) (x+2 ) (x+3 ) +1
=( x2 + 3x ) (x2 + 2x + x +2 ) +1
= ( x2 + 3x ) (x2 +3x + 2 ) +1 (*)
Đặt t = x2 + 3x thì (* ) = t ( t+2 ) + 1= t2 + 2t +1 = (t+1)2 = (x2 + 3x + 1 )2
=> x (x+1) (x+2 ) (x+3 ) +1 là số chính phương
hay tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương
a)Chứng minh rằng \(A=\left(n+1^4\right)+n^4+1\)chia hết cho một số chính phương khác 1 với n nguyên dương.
b) Cho \(A=a^2+b^2+c^2\), trong đó a và b là 2 số tự nhiên liên tiếp và c=ab. Chứng minh rằng \(\sqrt{A}\)là 1 số tự nhiên lẻ.
b, vì a và b là 2 stn liên tiếp nên a=b+1 hoặc b=a+1
cho b=a+1
\(A=a^2+b^2+c^2=a^2+b^2+a^2b^2=a^2+\left(a+1\right)^2+a^2\left(a+1\right)^2\)
\(=a^2+\left(a+1\right)^2\left(a^2+1\right)=a^2+\left(a^2+2a+1\right)\left(a^2+1\right)\)
\(=a^2+2a\left(a^2+1\right)+\left(a^2+1\right)^2=\left(a^2+a+1\right)^2\)
\(\Rightarrow\sqrt{A}=\sqrt{\left(a^2+a+1\right)^2}=a^2+a+1=a\left(a+1\right)+1=ab+1\)
vì a b là 2 stn liên tiếp nên sẽ có 1 số chẵn\(\Rightarrow ab\)chẵn \(\Rightarrow ab+1\)lẻ \(\Rightarrow\sqrt{A}\)lẻ (đpcm)
Làm cả câu a đi nhé! Nếu bạn làm được cả câu a thì mình k! ^_^ *_*
Sửa đề : \(A=\left(n^2+1\right)+n^4+1\)
\(\Rightarrow A=\left(n^2\right)^2+2n^2+1+n^2-2n^2+1\)
\(\Rightarrow\left(n^2+1\right)^2+\left(n^2-1\right)^2\)
Vậy ...........................
Cho a,b là 2 số tự nhiên liên tiếp và c=ab.
cmr: P=a^2+b^2+c^2 là một số chính phương lẻ
Vì a,b là 2 số tự nhiên liên tiếp nên b=a+1
Thay b=a+1 và c=ab vào P=
a^2 + (a+1)^2+a^2.b^2 = a^2+a^2+2a+1+a^2.(a+1)^2=
a^4+2a^3+3a^2+2a+1 = (a+1)(a^3+a^2+2a)+1= (a+1)((a^2)(a+1)+2a)+1=a^2(a+1)^2+2a.(a+1)+1=((a+1).a+1)^2 Hằng đẳng thức
vi a.(a+1) chẵn nên a.(a+1)+1 lẻ suy ra P là số chính phương lẻ
Chứng minh rằng
a) a^2 + b^2 lớn hơn hoặc bằng \(\frac{\left(a+b\right)^2}{2}\)với mọi a b
b) a^2 +b^2 +c^2 lớn hơn hặc bằng ab + bc + ca với mọi a b c
c) Tích của 4 số tự nhiên liên tiếp cộng thêm 1 là một số chính phương không ?
d) Tổng bình phương của 2 số lẻ liên tiếp có thể là một số chính phương ko ?
Chứng minh rằng tổng của n số tự nhiên lẻ liên tiếp (kể từ 1) là số chính phương
Khoảng cách giữa 2 số lẻ liên tiếp là 2
Số lẻ đầu tiên là 1 thì số lẻ thứ n là:
\(1+\left(n-1\right).2=2n-1\)
Khi đó: tổng n STN lẻ liên tiếp kể từ 1 là:
\(1+3+5+...+\left(2n-1\right)\)
\(=\left(1+2n-1\right).n:2\)
\(=2n^2:2=n^2\)
Vậy tổng của n STN lẻ liên tiếp là số chính phương.
Chúc em học tốt.
Cho a,b là hai số tự nhiên liên tiếp và c=ab.
CMR: P=a2+b2+c2 là một số chính phương lẻ
a, b là 2 số tự nhiên liên tiếp nên a hoặc b sẽ là một số chẵn hoặc một số lẻ. => a=2k, b=2k+1, c=2k(2k+1)
P=a^2+b^2+c^2
P=(2k)^2+(2k+1)^2+[(2k)(2k+1)]^2
P=4k^2+4k^2+1+2.2k+4k^2(2k+1)^2
P=4k^2+4k^2+4k+4k^2.(4k^2+1+4k)+1
mà 4k^2+4k^2+4k+4k^2.(4k^2+1+4k) chia hết cho 2
=> P ko chia hết cho 2.
P là số chính fuong lẻ
chứng minh rằng tổng của n số tự nhiên lẻ liên tiếp (kể từ 1) là số chính phương
cho hình bình hành ABCD có AB=a, AD=b
chứng minh rằng AC2+BD2=2(a2+b2)
- Gọi E là giao điểm của AC và BD
△ABE có trung tuyến BE
\(\Rightarrow BE^2=\dfrac{2\left(AB^2+BC^2\right)-AC^2}{4}\)
\(\Rightarrow4.BE^2=2\left(AB^2+BC^2\right)-AC^2\)
Mà O là trung điểm BD \(\Rightarrow BD=2.BE\Rightarrow BD^2=4.BE^2\)
\(\Rightarrow BD^2=2\left(AB^2+BC^2\right)-AC^2\)
\(\Rightarrow BD^2+AC^2=2\left(AB^2+BC^2\right)\)
Vậy: \(AC^2+BD^2=2\left(a^2+b^2\right)\left(đpcm\right)\)
(Hình như đây là Toán 10?)
Lời giải:
Kẻ đường cao $BH, DT$ của hình bình hành
Dễ chứng minh $\triangle ADT =\triangle BCH$ (ch-gn)
$\Rightarrow DT=CH; AT=BH$
Áp dụng định lý Pitago:
$AC^2+BD^2=AT^2+TC^2+BH^2+DH^2$
$=(AT^2+BH^2)+TC^2+DH^2)$
$=2AT^2+(DC-DT)^2+(DC+CH)^2$
$=2(AD^2-DT^2)+(DC-DT)^2+(DC-DT)^2$
$=2(b^2-DT^2)+(a-DT)^2+(a+DT)^2$
$=2(b^2+a^2)$
Ta có đpcm.