Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Demngayxaem
Xem chi tiết
Nguyễn Duy Hải Long
8 tháng 1 2017 lúc 22:53

với a+b+c khác 0 

=> A=a/b+c =b/a+c = c/b+a = a+b+c/b+c+a+c+b+a = a+b+c/2.(a+b+c) =1/2

=> A=1/2

với a+b+c =0

=>a+b= -c

b+c= -a

a+c= -b

thay vào A ta được :

=>A= a/-a = b/-b = c/-c=-1

=>A= -1

vậy A= -1 hoặc 1/2

Nguyễn Duy Hải Long
8 tháng 1 2017 lúc 22:14

1)a,b,c có khác 0 không bạn

nếu khác 0 thì tớ mới làm được

Nguyễn Duy Hải Long
8 tháng 1 2017 lúc 22:26

2) ta có: A<1/2+1/6+1/12+...+1/4054182

suy ra A<1/1.2 + 1/2.3 + 1/3.4 + ...+1/2013.2014

A<1- 1/2 +1/2-1/3+1/3-1/4+...+1/2013-1/2014

A<1-1/2014=2013/2014<1

do A >0 suy ra [A] =0

Lê Vương Đạt
Xem chi tiết
trần gia bảo
26 tháng 2 2020 lúc 20:02

a)    \(A=\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\frac{x^2-1+x+2-x^2}{x\left(x-1\right)}\right)\)

<=> \(A=\frac{x\left(x+1\right)}{\left(x-1\right)^2}.\frac{x\left(x-1\right)}{x+1}\)

<=> \(A=\frac{x^2}{x-1}\)

b) \(|2x+1|=3\)

TH1: 2x+1=3 \(\left(x\ge\frac{-1}{2}\right)\)

    => x=1 (TM)

TH2: 2x+1=-3 \(\left(x< \frac{-1}{2}\right)\)

    => x=-2 (TM)

c)     \(A< 3\)

<=> \(\frac{x^2}{x-1}< 3\)

<=> \(\frac{x^2-3x+3}{x-1}< 0\)

 =>  \(x< 1\)

Khách vãng lai đã xóa
Tran Le Khanh Linh
26 tháng 2 2020 lúc 20:07

\(A=\frac{x^2+x}{x^2-2x+1}:\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2-x^2}{x^2-x}\right)\left(x\ne0;x\ne1\right)\)

\(\Leftrightarrow A=\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\frac{x+1}{x}+\frac{1}{x-1}+\frac{2-x^2}{x\left(x-1\right)}\right)\)

\(\Leftrightarrow A=\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\frac{\left(x-1\right)\left(x+1\right)}{x\left(x-1\right)}+\frac{x}{x\left(x-1\right)}+\frac{2-x^2}{x\left(x-1\right)}\right)\)

\(\Leftrightarrow A=\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\frac{x^2-1}{x\left(x-1\right)}+\frac{x}{x\left(x-1\right)}+\frac{2-x^2}{x\left(x-1\right)}\right)\)

\(\Leftrightarrow A=\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\frac{x^2-1+x+2-x^2}{x\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\frac{x+1}{x\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\frac{x\left(x-1\right)}{x+1}=\frac{x^2}{x-1}\)

Khách vãng lai đã xóa
Tran Le Khanh Linh
26 tháng 2 2020 lúc 20:09

\(A=\frac{x^2}{x-1}\left(x\ne0;x\ne1\right)\)

\(|2x+1|=3\)

\(\Leftrightarrow\orbr{\begin{cases}2x+1=3\\2x+1=-3\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=2\\2x=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\left(loại\right)\\x=-2\left(tm\right)\end{cases}}}\)

Thay x=-2 vào A, ta có: \(A=\frac{2^2}{2-1}=\frac{4}{1}=4\)

Vậy \(A=4\)khi \(|2x+1|=3\)

Khách vãng lai đã xóa
hieu nguyen
Xem chi tiết
Mafia
25 tháng 3 2018 lúc 15:20

d)  \(A>0\Leftrightarrow\frac{-1}{x-2}>0\)

\(\Leftrightarrow x-2< 0\)  ( vì \(-1< 0\))

\(\Leftrightarrow x< 2\)

Despacito
25 tháng 3 2018 lúc 14:52

\(A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)

\(A=\)\(\left[\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right]\)

  \(:\left[\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right]\)

\(A=\frac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}:\left[\frac{x^2-4+10-x^2}{x+2}\right]\)

\(A=\frac{-6}{\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)

\(A=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{6}\)

\(A=\frac{-1}{x-2}\)

Mafia
25 tháng 3 2018 lúc 15:04

theo câu a) \(A=\frac{-1}{x-2}\)  với ĐKXĐ: \(x\ne\pm2\)

b) \(\left|2x-1\right|=3\)

\(\Rightarrow\orbr{\begin{cases}2x-1=3\\2x-1=-3\end{cases}}\Rightarrow\orbr{\begin{cases}2x=4\\2x=-2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)   \(\Rightarrow x=-1\)  ( vì \(x=2\)  ko TM ĐKXĐ )

+) khi \(x=-1\)thì \(A=\frac{-1}{-1-2}=\frac{-1}{-3}=\frac{1}{3}\)

vậy khi \(x=-1\)  thì \(A=\frac{1}{3}\)

Nhok Song Tử
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
10 tháng 12 2020 lúc 22:27

\(A=\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right)\div\left(\frac{x^2-2x}{x^3-x^2+x}\right)\)

a) ĐKXĐ : \(\hept{\begin{cases}x\ne-1\\x\ne2\end{cases}}\)

 \(=\left(\frac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{1}{x^2-x+1}-\frac{2}{x+1}\right)\div\left(\frac{x\left(x-2\right)}{x\left(x^2-x+1\right)}\right)\)

\(=\left(\frac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{1\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right)\div\frac{x-2}{x^2-x+1}\)

\(=\left(\frac{x+1+x+1-2x^2+2x-2}{\left(x+1\right)\left(x^2-x+1\right)}\right)\times\frac{x^2-x+1}{x-2}\)

\(=\frac{-2x^2+4x}{\left(x+1\right)\left(x^2-x+1\right)}\times\frac{x^2-x+1}{x-2}\)

\(=\frac{-2x\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}=\frac{-2x}{x+1}\)

b) \(\left|x-\frac{3}{4}\right|=\frac{5}{4}\)

<=> \(\orbr{\begin{cases}x-\frac{3}{4}=\frac{5}{4}\\x-\frac{3}{4}=-\frac{5}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\left(loai\right)\\x=-\frac{1}{2}\left(nhan\right)\end{cases}}\)

Với x = -1/2 => \(A=\frac{-2\cdot\left(-\frac{1}{2}\right)}{-\frac{1}{2}+1}=2\)

c) Để A ∈ Z thì \(\frac{-2x}{x+1}\)∈ Z

=> -2x ⋮ x + 1

=> -2x - 2 + 2 ⋮ x + 1

=> -2( x + 1 ) + 2 ⋮ x + 1

Vì -2( x + 1 ) ⋮ ( x + 1 )

=> 2 ⋮ x + 1

=> x + 1 ∈ Ư(2) = { ±1 ; ±2 }

x+11-12-2
x0-21-3

Các giá trị trên đều tm \(\hept{\begin{cases}x\ne-1\\x\ne2\end{cases}}\)

Vậy x ∈ { -3 ; -2 ; 0 ; 1 }

Khách vãng lai đã xóa
Hoàng Văn Dũng
Xem chi tiết
Lê Thị Quỳnh
Xem chi tiết
Trương Minh Trọng
24 tháng 6 2017 lúc 14:45

a) ĐKXĐ: \(x\ne-2;x\ne2\), rút gọn:

\(A=\left[\frac{3\left(x-2\right)-2x\left(x+2\right)+2\left(2x^2+3\right)}{2\left(x-2\right)\left(x+2\right)}\right]\div\frac{2x-1}{4\left(x-2\right)}\)

\(A=\frac{3x-6-2x^2-4x+4x^2+6}{2\left(x-2\right)\left(x+2\right)}\cdot\frac{4\left(x-2\right)}{2x-1}=\frac{4\left(2x^2-x\right)}{x\left(x+2\right)\left(2x-1\right)}=\frac{4x\left(2x-1\right)}{x\left(x+2\right)\left(2x-1\right)}=\frac{4}{x+2}\)

b) Ta có: \(\left|x-1\right|=3\Leftrightarrow\hept{\begin{cases}x-1=3\\x-1=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\left(n\right)\\x=-2\left(l\right)\end{cases}}}\)

=> Khi \(x=4\)thì \(A=\frac{4}{4+2}=\frac{4}{6}=\frac{2}{3}\)

c) \(A< 2\Leftrightarrow\frac{4}{x+2}< 2\Leftrightarrow4< 2x+4\Leftrightarrow0< 2x\Leftrightarrow x>0\)Vậy \(A< 2,\forall x>0\)

d) \(\left|A\right|=1\Leftrightarrow\left|\frac{4}{x+2}\right|=1\Leftrightarrow\hept{\begin{cases}\frac{4}{x+2}=1\\\frac{4}{x+2}=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\left(l\right)\\x=-6\left(n\right)\end{cases}}}\)Vậy \(\left|A\right|=1\)khi và chỉ khi x = -6

Phan Thị Thương
Xem chi tiết
Đinh Thị Ngọc Anh
Xem chi tiết
Minh Nguyễn
Xem chi tiết
Floura
23 tháng 12 2018 lúc 17:34

Đây mà là toán lớp 1 à ?

Nguyễn Hồng Thắm
Xem chi tiết
Nguyễn Hồng Thắm
6 tháng 10 2018 lúc 11:12

Ai giải giúp mình bài 1 với bài 4 trước đi