Tập hợp các giá trị của m để phương trình 1 2 x + 1 3 x + 1 4 x = m 2 x + 3 x + 4 x có nghiệm thuộc [0;1] là [a;b]. Giá trị của a+b là
A. 4 3
B. 2
C. 12 101
D. 121 108
ĐỀ THI HỌC KỲ I
Câu 1 : giải phương trình ln (3x2 - 2x +1) = ln ( 4x - 1)
Câu 2 : Tìm tập hợp các giá trị của tham số m để phương trình 3x + 3 = m \(\sqrt{9^x+1}\) có đúng 1 nghiệm
Câu 3 : Tìm tất cả các giá trị thực của tham số m để đồ thị của hàm số y = -x3 + 3mx + 1 có 2 điểm cực trị A , B sao cho tam giác OAB vuông tại O ( với O là gốc tọa độ )
Tìm tập hợp tất cả các giá trị của tham số thực m để phương trình 9 1 - x + 2 ( m - 1 ) 3 1 - x + 1 = 0 có 2 nghiệm phân biệt.
A. m > 1
B. m < -1
C. m < 0
D. -1 < m < 0
Gọi S là tập hợp các giá trị nguyên của m để phương trình x 2 + y 2 + z 2 - 2 ( m + 2 ) x + 4 m y - 2 m z + 7 m 2 - 1 = 0 là phương trình mặt cầu. Số phần tử của S là
A. 6
B. 7
C. 4
D. 5
Tập hợp tất cả các giá trị của tham số m để phương trình 1 + x + 1 − x + 4 1 − x 2 = m có nghiệm là:
A. 2 ; + ∞
B. 6 ; + ∞
C. 2 , 6
D. 2 , 2 2
1 + x + 1 − x + 4 1 − x 2 = m 1
Điều kiện: − 1 ≤ x ≤ 1
Đặt t = 1 + x + 1 − x ≥ 0 ⇒ t 2 = 2 + 2 1 − x 2
Do 2 ≤ t 2 ≤ 4 nên t ∈ 2 ; 2
Trở thành t + 2 t 2 − 2 = m ⇔ 2 t 2 + t − 4 + m = 0 ( 2 )
Để (1) có nghiệm thì (2) có nghiệm t ∈ 2 ; 2
Tức là: Δ = 1 + 4.2 4 + m = 8 m + 33 ≥ 0 2 ≤ − 1 − 8 m + 33 4 ≤ 2 2 ≤ − 1 + 8 m + 33 4 ≤ 2 ⇔ m ≥ − 33 8 4 2 + 1 ≤ 8 m + 33 ≤ 9
⇔ m ≥ − 33 8 2 ≤ m ≤ 6 ⇔ 2 ≤ m ≤ 6
Vậy m ∈ 2 ; 6 thì phương trình đã cho có nghiệm
Đáp án cần chọn là: C
Tìm tập hợp tất cả các giá trị của tham số m để phương trình x 3 + x 2 + x = m ( x 2 + 1 ) 2 có nghiệm thuộc đoạn [0;1]?
A . m ≥ 1
B . m ≤ 1
C . 0 ≤ m ≤ 1
D . 0 ≤ m ≤ 3 4
Cho phương trình m + 1 log 2 2 x + 2 log 2 x + m - 2 = 0 . Tìm tập hợp tất cả các giá trị của tham số thực m để phương trình đã cho có hai nghiệm thực x1, x2 thỏa 0 < x1 < 1 < x2
A. 2 ; + ∞
B. - 1 ; 2
C. - ∞ ; - 1
D. - ∞ ; - 1 ∪ 2 ; + ∞
Đáp án B.
Đặt t = log2 x,
khi đó m + 1 log 2 2 x + 2 log 2 x + m - 2 = 0
⇔ m + 1 t 2 + 2 t + m - 2 = 0 (*).
Để phương trình (*) có hai nghiệm phân biệt
Khi đó gọi x1, x2 lần lượt hai nghiệm của phương trình (*).
Vì 0 < x1 < 1 < x2 suy ra
Tìm tập hợp tất cả các giá trị của tham số m để phương trình l o g 2 x - l o g 2 ( x - 2 ) = m có nghiệm
A. 1 ≤ m < + ∞
B. 1 < m < + ∞
C. 0 ≤ m < + ∞
D. 0 < m < + ∞
Cho phương trình m . l n 2 ( x + 1 ) - ( x + 2 - m ) l n ( x + 1 ) - x - 2 = 0 (1). Tập hợp tất cả các giá trị của tham số m để phương trình (1) có hai nghiệm phân biệt thoả mãn 0 < x 1 < 2 < 4 < x 2 là khoảng . Khi đó a thuộc khoảng
Cho S là tập hợp các giá trị thực của tham số m để phương trình 2 − x + 1 − x = m + x − x 2 có hai nghiệm phân biệt. Tổng các số nguyên trong S bằng
A. 11
B. 0
C. 5
D. 6
Đặt − x 2 + x = t ;
f x = − x 2 + x ; f ' x = − 2 x + 1
Chọn A
Cho S là tập hợp các giá trị thực của tham số m để phương trình 2 - x + 1 - x = m + x - x 2 có hai nghiệm phân biệt. Tổng các số nguyên trong S bằng
A. 11.
B. 0.
C. 5.
D. 6.
Đáp án A
+)()
Điều kiện:
+)
Đặt:
Đặt
.
Bảng biến thiên
+)
Để phương trình có hai nghiệm phân biệt
Do đó để phương trình có hai nghiệm phân biệt thì phương trìnhcó nghiệm
Từ bảng biến thiên.