a, so sánh: A=2009.2011 và B=2010^2
b, so sánh: A=3^450 và B=5^300
So sánh
a A= 2^0+2^1+2^3+......+2^2010 và B=2^2011-1
b A= 2009.2011 và B= 2010^2
c A= 333^444 và B=444^333
d A= 3^450 và 5^300
Có 333^444=(333^4)^111 và 444^333=(444^3)^111
Như vậy ta cần so sánh 333^4 và 444^3:
Vì 333^4/444^3=3^4*111^4/(4^3*111^3)=3^4*11... nên 333^4>444^3 do đó
333^444>444^333
So sánh :
a) A= 2009.2011 và B= 2010 mũ 2
b) A= 333 mũ 444 và 444 mũ 333
c) A= 3 mũ 450 và B= 5 mũ 300
Giúp mình nhé
So sánh :
a) A= 2009.2011 và B= 2010 mũ 2
b) A= 333 mũ 444 và 444 mũ 333
c) A= 3 mũ 450 và B= 5 mũ 300
Giúp mình nhé !
1, so sánh A= 2009 .2011 và B =2010^2
so sánh A = 3^450 và B = 5^300
so sánh A= 2^0+2^1+2^2+2^3+...+2^2010 VÀ B= 2^2011-1A=2009.2011 VÀ B= 2010^2a= 10^30 và B= 2^100a=333^444 VÀ B= 444^333A=3^450 VÀ B= 5^300
1, a,so sánh A = 2009 . 2011 và B = 2010^2
b, so sánh A = 3^450 và B=5^300
Bài 1: So sánh:
a) A=2^2+2^1+2^2+2^3+....+2^2010 và B=2^2011-2
b) B=2009.2011 và B=2010^2
c) C=10^30 và B=2^100
d) D=333^444 và B=444^333
e) E=3^450 và B=5^300
a Chứng minh : A = 2^1 + 2^2 + 2^3 +2^4+.....+ 26 2010 chia hết cho 3 và 7
b, So sánh : A = 2009 . 2011 và B = 2010^2
c, so sánh A = 3^450 và B = 5 ^300
mình cần gấp lắm
a) Xin lỗi bạn nhé !!!
b) 2010^2 và 2009.2011
<=> (2009+1).2010 và 2009.(2010+1)
<=> 2009.2010+2010 > 2009.2010+2009
=> 2010^2 > 2009 . 2011
c)
\(3^{450}=3^{3\cdot150}=\left(3^3\right)^{150}=27^{150}\)
\(5^{300}=5^{2\cdot150}=\left(5^2\right)^{150}=25^{150}\)
Vì \(27^{150}>25^{150}\)
Nên \(3^{450}>5^{300}\)
a) A = 2 + 22 + ... + 22010
= ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 22009 + 22010 )
= 2.(1+2) + 23.(1+2) + ... + 22009.(1+2)
= 2.3 + 23.3 + ... + 22009.3 chia hết cho 3
A = 2 + 22 + ... + 22010
= ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 22008 + 22009 + 22010 )
= 2.(1+2+22) + 24.(1+2+22) + ... + 22008.(1+2+22)
= 2.7 + 24.7 + ... + 22008.7 chia hết cho 7
b) Xét A = 2009.2011
= (2010-1) . (2010+1)
= 2010.2010 + 1.2010 - 1.2010 - 1.1
= 2010.2010 - 1
B = A - 1
Vậy B < A
c) Ta có : 3450 = 35.90 = 1590
5300 = 53.100 = 15100
Vì 1590 < 15100 nên 3450 < 5300 hay A < B
a) A = 2 + 22 + ... + 22010
= ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 22009 + 22010 )
= 2.(1+2) + 23.(1+2) + ... + 22009.(1+2)
= 2.3 + 23.3 + ... + 22009.3 chia hết cho 3
A = 2 + 22 + ... + 22010
= ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 22008 + 22009 + 22010 )
= 2.(1+2+22) + 24.(1+2+22) + ... + 22008.(1+2+22)
= 2.7 + 24.7 + ... + 22008.7 chia hết cho 7
b) Xét A = 2009.2011
= (2010-1) . (2010+1)
= 2010.2010 + 1.2010 - 1.2010 - 1.1
= 2010.2010 - 1
B = A - 1
Vậy B < A
c) Ta có : 3450 = 33.150 = 27150
5300 = 52.150 = 25150
Vì 25150 < 27150 nên 3450 > 5300 hay A > B
So sánh:
a) A = 20 + 21 + 22 + 23 + ... + 22010 Và B = 22011- 1
b) A = 2009.2011 và B = 20102
c) A = 1030 và B = 2100
d) A = 333444và B = 444333
e) A = 3450 và B = 5300
a) A = 20 + 21 + 22 + 23 + ... + 22010
=> 2A = 21 + 22 + 23 + ... + 22010 + 22011
=> 2A - A = (21 + 22 + 23 + ... + 22010 + 22011) - (20 + 21 + 22 + 23 + ... + 22010)
A = 21 + 22 + 23 + ... + 22010 + 22011 - 20 - 21 - 22 - 23 - ... - 22010
= 22011 - 1 = B
Vậy A = B
b) A = 2009 . 2011 = 2009 . (2010 + 1) = 2009 . 2010 + 2009
B = 20102 = 2010 . 2010 = (2009 + 1) . 2010 = 2009 . 2010 + 2010
Mà 2009 . 2010 + 2009 < 2009 . 2010 + 2010 nên A < B
c) A = 1030 = (103)10 = 100010
B = 2100 = (210)10 = 102410
Mà 102410 > 100010 A > B
d) A = 333444 = (3334)111 = [(3.111)4]111 = (34.1114)111 = (81 . 1114)111
B = 444333 = (4443)111 = [(4.111)3]111 = (43.1113)111 = (64 . 1113)111
Mà (81 . 1114)111 > (64 . 1113)111 nên A > B
e) A = 3450 = (33)150 = 27150
B = 5300 = (52)150 = 25150
Mà 27150 > 25150 nên A > B