cho x, y nguyên dương thỏa mãn x+y=1. Tìm giá trị nhỏ nhất của M=\(\frac{2}{xy}+\frac{3}{x^2+y^2}\)
Cho hai số dương x,y thay đổi thỏa mãn: xy=2. Tìm giá trị nhỏ nhất của
\(M=\frac{1}{x}+\frac{2}{y}+\frac{3}{2x+y}\)
Ta có xy=2 => \(y=\frac{2}{x}\)
ta có : M = \(\frac{1}{x}+\frac{2}{y}+\frac{3}{2x+y}=\frac{1}{x}+x+\frac{3}{2x+\frac{2}{x}}+\frac{2}{\frac{2}{x}}-x\)= \(\left(x+\frac{1}{x}\right)+\frac{3}{2\left(\frac{1}{x}+x\right)}\)
Áp dụng BĐT AM - GM ta được :
M \(\ge2\sqrt{\frac{\left(\frac{1}{x}+x\right)3}{\left(\frac{1}{x}+x\right)2}}=2\sqrt{\frac{3}{2}}=\sqrt{6}\)
Dấu "="......
Vậy Min M = \(\sqrt{6}\) Khi ......
============
bấm đi bấm lại 2 lần , máy lỗi , phần tìm x,y bạn tự làm nhé
=========================
Bài 1:Cho 1. Cho x, y, z dương thỏa mãn x + y + z = 3. Tìm giá trị nhỏ nhất của biểu thức
\(P=2\left(x^2+y^2+z^2\right)+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Bài 2:Cho hai số dương x, y thỏa mãn \(x+y\le2\) . Tìm giá trị nhỏ nhất của
\(C=\frac{1}{x^2+y^2}+\frac{7}{xy}+xy\)
Các bạn giải cho mình 1 bài là được rồi mà giải được cả 2 thì càng tốt
Giờ bạn cần bài này nữa không
1. Đặt A = x2+y2+z2
B = xy+yz+xz
C = 1/x + 1/y + 1/z
Lại có (x+y+z)2=9
A + 2B = 9
Dễ chứng minh A>=B
Ta thấy 3A>=A+2B=9 nên A>=3 (khi và chỉ khi x=y=z=1)
Vì x+y+z=3 => (x+y+z) /3 =1
C = (x+y+z) /3x + (x+y+x) /3y + (x+y+z)/3z
C = 1/3[3+(x/y+y/x) +(y/z+z/y) +(x/z+z/x)
Áp dụng bất đẳng thức (a/b+b/a) >=2
=> C >=3 ( khi và chỉ khi x=y=z=1)
P =2A+C >= 2.3+3=9 ( khi và chỉ khi x=y=x=1
Vậy ...........
Câu 2 chưa ra thông cảm
Tìm các số nguyên x,y thỏa mãn:6xy+4x-9y-7=0
Tìm giá trị nhỏ nhất của A=x^3+y^3+xy với x,y dương thỏa mãn x+y=1
Tìm các số nguyên x,y thỏa mãn 2x^2+1/x^2+y^2/4=4 sao cho xy đạt giá trị lớn nhất
HELP !
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
cho x và y là 2 số nguyên dương thỏa mãn x+y = 2
tìm giá trị nhỏ nhất của biểu thức Q=\(\frac{2}{x2+y2}+\frac{3}{xy}\)
Áp dụng bất đẳng thức Svacxo và bất đẳng thức \(\frac{1}{4ab}\ge\frac{1}{\left(a+b\right)^2}\)ta có :
\(Q=\frac{2}{x^2+y^2}+\frac{2}{2xy}+\frac{4}{2xy}=2\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{8}{4xy}\)
\(\ge2\frac{\left(1+1\right)^2}{\left(x+y\right)^2}+\frac{8}{\left(x+y\right)^2}=\frac{2.4}{2^2}+\frac{8}{2^2}=\frac{16}{4}=4\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=1\)
Vậy min Q = 4 khi x = y = 1
Cho x,y,z là ba số dương thỏa mãn x+y+z=1. Tìm giá trị nhỏ nhất của biểu thức
\(M=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)
Áp dụng bất đẳng thức Cauchy
\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\ge\frac{9}{xy+yz+zx}\)
\(M\ge\frac{1}{x^2+y^2+z^2}+\frac{9}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{4}{2\left(xy+yz+xz\right)}+\frac{7}{xy+yz+zx}\)
Áp dụng BĐT Cauchy - Schwarz :
\(\frac{1}{x^2+y^2+z^2}+\frac{4}{2\left(xy+yz+zx\right)}\ge\frac{\left(1+2\right)^2}{\left(x+y+z\right)^2}=9\)
và \(\frac{7}{xy+yz+xz}\ge\frac{7}{\frac{1}{3}\left(x+y+z\right)^2}=21\)
\(\Rightarrow M\ge9+21=30\)
Dấu " = " xảy ra khi \(x=y=z=\frac{1}{3}\)
Áp dụng BĐT Cauchy schwarz ta có:
\(M=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)
\(\ge\frac{1}{x^2+y^2+z^2}+\frac{9}{xy+yz+zx}\)
\(=\frac{1}{x^2+y^2+z^2}+\frac{4}{2\left(xy+yz+zx\right)}+\frac{7}{2\left(xy+yz+zx\right)}\)
\(\ge\frac{9}{\left(x+y+z\right)^2}+\frac{7}{\frac{2\left(x+y+z\right)^2}{3}}=30\)
Đẳng thức xảy ra tại x=y=z=1/3
cho các số thực dương x, y thỏa mãn x+xy+y =8 tìm giá trị nhỏ nhất của biểu thức \(x^3+y^3+x^2+y^2+5\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\)
x+xy+y+1=9
(x+1)(y+1)=9
áp dụng bđt ab<=(a+b)^2/4
->9<=(x+y+2)^2/4 -> x+y >=4
....
Cho 3 số thực dương x,y,z thỏa mãn x+y+z=1. Tìm giá trị nhỏ nhất của biểu thức :
\(P=\frac{x}{x+yz}+\frac{y}{y+zx}+\frac{z^2+2}{z+xy}\)
Theo giả thiết ta có : \(x+yz=yz-z-1=\left(z-1\right)\left(y+1\right)=\left(x+y\right)\left(y+1\right)\)
Tương tự : \(y+zx=\left(x+y\right)\left(x+1\right)\)
Và \(z+xy=\left(x+1\right)\left(y+1\right)\)
Nên \(P=\frac{x}{\left(x+y\right)\left(y+1\right)}+\frac{y}{\left(x+y\right)\left(x+1\right)}+\frac{z^2+2}{\left(x+1\right)\left(y+1\right)}\)
\(=\frac{x^2+y^2+x+y}{\left(x+y\right)\left(x+1\right)\left(y+1\right)}+\frac{z^2+2}{\left(x+1\right)\left(y+1\right)}\)
Ta có \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2};\left(x+1\right)\left(y+1\right)\le\frac{\left(x+y+2\right)^2}{4}\)
nên \(P\ge\frac{2\left(x+y\right)^2+4\left(x+y\right)}{\left(x+y+2\right)^2\left(x+y\right)}+\frac{4\left(z^2+2\right)}{\left(x+y+2\right)^2}=\frac{2\left(x+y\right)+4}{\left(x+y+2\right)^2}+\frac{4\left(z^2+2\right)}{\left(x+y+2\right)^2}\)
\(=\frac{2}{z+1}+\frac{4\left(z^2+2\right)}{\left(z+1\right)^2}=f\left(z\right);z>1\)
Lập bảng biến thiên ta được \(f\left(z\right)\ge\frac{13}{4}\) hay min \(P=\frac{13}{4}\) khi \(\begin{cases}z=3\\x=y=1\end{cases}\)
Cho hai số dương x, y thỏa mãn x + y = 2. Tính giá trị nhỏ nhất của biểu thức
\(A=\frac{1}{x^2}+\frac{1}{y^2}+\frac{3}{xy}.\)
Nhận xét :
x2 lớn hơn 0 ( với mọi x dương )
y2 lớn hơn 0 ( với mọi y dương )
Để Amin => \(\frac{1}{x^2}+\frac{1}{y^2}\) Min => x2 và y2 max
Nhưng x + y = 2
=> x = y = 1
A min = \(\frac{1}{1}+\frac{1}{1}+\frac{3}{1}=5\)
Vậy A min = 5 <=> x = y = 1
\(A=\frac{1}{x^2}+\frac{1}{y^2}+\frac{3}{xy}\) và x + y = 2
AM-GM => x + y >= \(2\sqrt{xy}\)
=> \(2\sqrt{xy}\)<= 2
=> xy <= 1
\(\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{1}{xy}\)
=> A >= 1/xy + 3/xy
=> A >= 4/xy
mà xy <= 1
=> A >= 4/1
=> A>= 4
dấu bằng sảy ra khi x = y = 2/2 = 1
Vậy GTNN của A là 4 khi x = y = 1
Nhầm 1/x^2 + 1/y^2 >= 2/xy
=> A >= 5
khi x = y = 1 nhé
Cho x, y là các số dương thỏa mãn x + y = 3.
Tìm giá trị nhỏ nhất của biểu thức: \(P=\frac{5}{x^2+y^2}+\frac{3}{xy}\)
CM : với a,b > 0 thì \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b};\frac{\left(a+b\right)^2}{4}\ge ab\)
Dấu " = " xảy ra \(\Leftrightarrow\)a = b
Ta có : P = \(\frac{5}{x^2+y^2}+\frac{3}{xy}=\left(\frac{5}{x^2+y^2}+\frac{5}{2xy}\right)+\frac{1}{2xy}=5.\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}\)
\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}=\frac{4}{9}\)
\(xy\le\frac{\left(x+y\right)^2}{4}\Rightarrow\frac{1}{2xy}\ge\frac{2}{\left(x+y\right)^2}=\frac{2}{9}\)
\(\Rightarrow P\ge5.\frac{4}{9}+\frac{2}{9}=\frac{22}{9}\)
Dấu " = "xảy ra \(\Leftrightarrow\)x = y = 1,5
1.Cho x, y, z dương thỏa mãn x + y + x = 3. Tính giá trị nhỏ nhất của :
P = \(2\left(x^2+y^2+z^2\right)+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
2.Cho hai số x, y dương thỏa mãn \(x+y\le2\).Tính giá trị nhỏ nhất của :
C = \(\frac{1}{x^2+y^2}+\frac{7}{xy}+xy\)