\(\frac{5x+3}{9x+5}=\frac{5x+6}{9x+10}\)
Giải Phương trình sau
a) \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)
b) \(\frac{3}{5x-1}+\frac{2}{3-5x}=\frac{4}{\left(1-5x\right)\left(x-3\right)}\)
3x+2/3x-2 - 6/2+3x = 9x2/9x2-4 (đkxđ :3/2 , -3/2)
<=>3x+2/(3x-2).(3x+2) - 6/(3x-2).(3x+2) = 9x2/(3x-2).(3x+2)
=>3x+2 - 6 = 9x2
<=>3x-9x2=6+2
<=>3x-9x2=8
<=>3(x-3x)=8
<=>x-3x=8/3
<=>2x=8/3
<=>x=8/3 / 2
<=>x=4/3(thoải mãn)
vậy phương trình có nghiệm x = 4/3
bây giờ phải đi học thêm rồi phần b làm cũng tương tự phần a mà cố gắng lên nha
giải phương trình sau:
a) \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x-4}\\\)
b) \(\frac{3}{5x-1}+\frac{2}{3-5x}=\frac{4}{\left(1-5x\right)\left(x-3\right)}\)
c)\(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{8+6x}{16x^2-1}\)
d) \(5+\frac{76}{x^2-16}=\frac{2x-1}{x+4}-\frac{3x-1}{4-x}\)
Bài làm
a) \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x-4}\)
\(\Leftrightarrow\frac{3x+2}{3x-2}-\frac{6}{3x+2}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)
\(\Leftrightarrow\frac{(3x+2)\left(3x+2\right)}{(3x-2)\left(3x+2\right)}-\frac{6\left(3x-2\right)}{(3x+2)\left(3x-2\right)}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)
\(\Rightarrow\left(3x+2\right)^2-\left(18x-12\right)=9x^2\)
\(\Leftrightarrow9x^2+12x+4-18x+12x-9x^2=0\)
\(\Leftrightarrow6x+4=0\)
\(\Leftrightarrow x=-\frac{4}{6}\)
\(\Leftrightarrow x=-\frac{2}{3}\)
Vậy x = -2/3 là nghiệm.
@Tao Ngu :))@ 9x-4 không tách thành (3x+4)(3x-4) được đâu bạn. Chỗ đó phải là: 9x2-4
Bài thiếu đkxđ của x \(\hept{\begin{cases}3x-2\ne0\\2+3x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}3x\ne2\\3x\ne-2\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne\frac{2}{3}\\x\ne\frac{-2}{3}\end{cases}\Leftrightarrow}x\ne\pm\frac{2}{3}}\)
b) Bạn kiểm tra lại đề bài
c) \(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{8}{16x^2-1}\left(x\ne\pm\frac{1}{4}\right)\)
\(\Leftrightarrow\frac{3}{1-4x}-\frac{2}{4x+1}+\frac{8}{16x^2-1}=0\)
\(\Leftrightarrow\frac{-3}{4x+1}-\frac{2}{4x+1}+\frac{8}{\left(4x+1\right)\left(4x-1\right)}=0\)
\(\Leftrightarrow\frac{-3\left(4x-1\right)}{\left(4x-1\right)\left(4x+1\right)}-\frac{2\left(4x-1\right)}{\left(4x-1\right)\left(4x+1\right)}+\frac{8}{\left(4x-1\right)\left(4x+1\right)}=0\)
\(\Leftrightarrow\frac{-12x+3}{\left(4x-1\right)\left(4x+1\right)}-\frac{8x-2}{\left(4x-1\right)\left(4x+1\right)}+\frac{8}{\left(4x-1\right)\left(4x+1\right)}=0\)
\(\Leftrightarrow\frac{-12x+3-8x+2+8}{\left(4x-1\right)\left(4x+1\right)}=0\)
=> -20x+13=0
<=> -20x=-13
<=> \(x=\frac{13}{20}\left(tmđk\right)\)
giải phương trình:\(\frac{2x}{6x^2-x+3}+\frac{5x}{4x^2+5x+2}+\frac{x}{2x^2+3x+1}=\frac{1}{3}\)
b, \(\frac{1}{x+1}+\frac{2}{x+2}+\frac{1}{x+3}=\frac{1}{x+4}+\frac{2}{x+5}+\frac{1}{x+6}\)
c, \(x^2+\frac{9x^2}{\left(x+3\right)^2}=7\)
d,\(\frac{1}{x-1}+\frac{1}{x}+\frac{1}{x+1}+\frac{1}{x+2}+\frac{1}{x+3}=0\)
e,\(\frac{9x}{x^2-2x+3}=\frac{5x^2+9x+15}{x^2+3x+3}\)
a,ĐKXĐ \(x\ne-1;-\frac{1}{2}\)
Ta thấy x=0 không là nghiệm của PT
Xét \(x\ne0\)
Khi đó PT
<=> \(\frac{2}{6x-1+\frac{3}{x}}+\frac{5}{4x+5+\frac{2}{x}}+\frac{1}{2x+3+\frac{1}{x}}=\frac{1}{3}\)
Đặt \(2x+\frac{1}{x}=a\)
=> \(\frac{2}{3a-1}+\frac{5}{2a+5}+\frac{1}{a+3}=\frac{1}{3}\)
<=> \(3\left(25a^2+75a+10\right)=6a^3+31a^2+34a-15\)
<=> \(6a^3-44a^2-191a-45=0\)
Xin lỗi đến đây tớ ra nghiệm không đẹp
c, \(x^2+\frac{9x^2}{\left(x+3\right)^2}=7\) ĐKXĐ \(x\ne-3\)
<=> \(\left(x-\frac{3x}{x+3}\right)^2+2.\frac{3x^2}{x+3}=7\)
<=> \(\left(\frac{x^2}{x+3}\right)^2+6.\frac{x^2}{x+3}-7=0\)
<=> \(\left(\frac{x^2}{x+3}+7\right)\left(\frac{x^2}{x+3}-1\right)=0\)
<=> \(\orbr{\begin{cases}x^2+7x+21=0\\x^2-x-3=0\end{cases}}\)
\(S=\left\{\frac{1\pm\sqrt{13}}{2}\right\}\)thỏa mãn ĐKXĐ
b,\(\frac{1}{x+1}+\frac{2}{x+2}+\frac{1}{x+3}=\frac{1}{x+4}+\frac{2}{x+5}+\frac{1}{x+6}\)ĐKXĐ \(x\ne-1;-2;-3;-4;-5;-6\)
<=>\(\left(\frac{1}{x+1}-\frac{1}{x+6}\right)+2\left(\frac{1}{x+2}-\frac{1}{x+5}\right)+\left(\frac{1}{x+3}-\frac{1}{x+4}\right)=0\)
<=>\(\frac{5}{x^2+7x+6}+\frac{6}{x^2+7x+10}+\frac{1}{x^2+7x+12}=0\)
Đặt \(x^2+7x+6=a\)
=> \(\frac{5}{a}+\frac{6}{a+4}+\frac{1}{a+6}=0\)
<=> \(12a^2+90a+120=0\)
<=> \(a=\frac{-15\pm\sqrt{65}}{4}\)
Thay vào tính x nhưng bài này tớ ra nghiệm không đẹp
bài 1 giải phương trình
\(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)
\(\frac{3}{5x-1}+\frac{3}{3-5x}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\)
\(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{8+6x}{16x^2-1}\)
\(\frac{5-x}{4x^2-8x}+\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\)
\(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\)
Giải:
a) ⇔⇔ 9x2 + 12x + 4 - 18x + 12 = 9x2 ⇔ 9x2 + 12x + 4 - 18x + 12 - 9x2 = 0
⇔ 16 + 6x = 0 ⇔ 2(8 + 3x) = 0 ⇔ 8 + 3x = 0 ⇔ x = \(\frac{-8}{3}\)
Vậy nghiệm của phương trình là x = \(\frac{-8}{3}\) .
b) \(\frac{3}{5x-1}+\frac{3}{3-5x}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\text{⇔ }\frac{-3}{1-5x}+\frac{-3}{5x-3}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\)
⇔ \(\frac{9-15x}{\left(1-5x\right)\left(5x-3\right)}+\frac{15x-3}{\left(1-5x\right)\left(5x-3\right)}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\) ⇔ 9 - 15x + 15x - 3 = 4
⇔ 8 = 4 ( vô lí)
Vậy phương trình trên vô nghiệm.
Mình chỉ làm 2 câu a, b thôi nhé! Các bài tập này cách làm giống nhau, bạn tự hoàn thành những bài còn lại nhé!
Giải phương trình :
\(\frac{9x-0.7}{4}-\frac{5x-1.5}{7}=\frac{7x-1.1}{3}-\frac{2-10x}{6}\)
Phương trình chứa ẩn ở mẫu
Giai các phương trình sau
1. \(\frac{7x-3}{x-1}=\frac{2}{3}\)
2. \(\frac{5x-1}{3x+2}=\frac{5x-7}{3x-1}\)
3. \(\frac{1-x}{x+1}+3=\frac{2x+3}{x+1}\)
4. \(\frac{1-6x}{x-2}+\frac{9x+4}{x+2}=\frac{x\left(3x-2\right)+1}{x^2-4}\)
5. \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)
6. \(1+\frac{1}{x+2}=\frac{12}{8-x^3}\)
\(1.\frac{7x-3}{x-1}=\frac{2}{3}\) ( \(x\ne1\))
\(\Leftrightarrow\frac{3\left(7x-1\right)}{3\left(x-1\right)}=\frac{2\left(x-1\right)}{3\left(x-1\right)}\)
\(\Rightarrow3\left(7x-3\right)=2\left(x-1\right)\)
\(\Leftrightarrow21x-9=2x-2\)
\(\Leftrightarrow19x=7\)
\(\Leftrightarrow x=\frac{7}{19}\)
\(2.\frac{5x-1}{3x+2}=\frac{5x-7}{3x-1}\)
\(\Leftrightarrow\frac{\left(5x-1\right)\left(3x-1\right)}{\left(3x+2\right)\left(3x-1\right)}=\frac{\left(5x-7\right)\left(3x+2\right)}{\left(3x-1\right)\left(3x+2\right)}\)
\(\Rightarrow\left(5x-1\right)\left(3x-1\right)=\left(5x-7\right)\left(3x+2\right)\)
\(\Leftrightarrow15x^2-5x-3x+1=15x^2+10x-21x-14\)
\(\Leftrightarrow15x^2-8x+1=15x^2-11x-14\)
\(\Leftrightarrow\left(15x^2-15x^2\right)+\left(-8x+11x\right)=-14-1\)
\(\Leftrightarrow3x=-15\)
\(\Leftrightarrow x=-5\)
\(3.\frac{1-x}{x+1}+3=\frac{2x+3}{3x-1}\)
\(\Leftrightarrow\frac{\left(1-x\right)\left(3x-1\right)}{\left(x+1\right)\left(3x-1\right)}+\frac{3\left(x+1\right)\left(3x-1\right)}{\left(x+1\right)\left(3x-1\right)}=\frac{\left(2x+3\right)\left(x+1\right)}{\left(3x-1\right)\left(0+1\right)}\)
\(\Rightarrow\left(1-x\right)\left(3x-1\right)+3\left(x+1\right)\left(3x-1\right)=\left(2x+3\right)\left(x+1\right)\)
\(\Leftrightarrow3x-1-3x^2+x+3\left(3x^2-x+3x-1\right)=2x^2+2x+3x+3\)
\(\Leftrightarrow3x-1-3x^2+x+9x^2-3x+9x-3=2x^2+2x+3x+3\)
\(\Leftrightarrow6x^2+10x-4=2x^2+5x+3\)
\(\Leftrightarrow\left(6x^2-2x^2\right)+\left(10x-5x\right)=7\)
\(\Leftrightarrow4x^2+5x-7=0\)
\(\Leftrightarrow\left(2x\right)^2+4x.\frac{5}{4}+\frac{16}{25}+\frac{191}{25}=0\)
\(\Leftrightarrow\left(2x+\frac{5}{4}\right)^2-\frac{191}{25}=0\)
\(\left(2x+\frac{5}{4}\right)^2>0\)
\(\Rightarrow\left(2x+\frac{5}{4}\right)^2+\frac{191}{25}>0\)
=> PT vô nghiệm
\(4.\frac{1-6x}{x-2}+\frac{9x+4}{x+2}=\frac{x\left(3x-2\right)+1}{x^2-4}\)
\(\Leftrightarrow\frac{\left(1-6x\right)\left(x+2\right)}{x^2-4}+\frac{\left(9x+4\right)\left(x-2\right)}{x^2-4}=\frac{2\left(3x-2\right)+1}{x^2-4}\)
\(\Rightarrow\left(1-6x\right)\left(x+2\right)+\left(9x+4\right)\left(x-2\right)=3\left(3x-2\right)+1\)
\(\Leftrightarrow x+2-6x^2-12x+9x^2-18x+4x-8=3x^2-2x+1\)
\(\Leftrightarrow3x^2-25x-6=3x^2-2x+1\)
\(\Leftrightarrow\left(3x^2-3x^2\right)+\left(-25x+2x\right)+\left(-6-1\right)=0\)
\(\Leftrightarrow-23x-7=0\)
\(\Leftrightarrow-23x=7\)
\(\Leftrightarrow x=\frac{-7}{23}\)
\(5.\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)
\(\Leftrightarrow\frac{\left(3x+2\right)^2}{9x^2-4}-\frac{6\left(3x-2\right)}{9x^2-4}=\frac{9x^2}{9x^2-4}\)
\(\Rightarrow\left(3x+2\right)^2-6\left(3x-2\right)=9x^2\)
\(\Leftrightarrow9x^2+12x+4-18x+12=9x^2\)
\(\Leftrightarrow\left(9x^2-9x^2\right)+\left(12x-18x\right)+\left(4+12\right)=0\)
\(\Leftrightarrow-6x+16=0\)
\(\Leftrightarrow-6x=-16\)
\(\Leftrightarrow x=\frac{16}{6}\)
\(6.1+\frac{1}{x+2}=\frac{12}{8-x^3}\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(8-x^3\right)}{\left(x+2\right)\left(8-x^3\right)}+\frac{1\left(8-x^3\right)}{\left(x+2\right)\left(8-x^3\right)}=\frac{12\left(x+2\right)}{\left(x+2\right)\left(8-x^3\right)}\)
\(\Rightarrow\left(x+2\right)\left(8-x^3\right)+1\left(8-x^3\right)=12\left(x+2\right)\)
\(\Leftrightarrow8x+x^4+16+2x^3+8-x^3=12x+24\)
\(\Leftrightarrow x^4+\left(2x^3-x^3\right)+\left(8x-12x\right)+\left(16-24\right)=0\)
\(\Leftrightarrow x^4+x^3-4x-8=0\)
\(\Leftrightarrow\left(x^4-4x\right)+\left(x^3-8\right)=0\)
Đến đấy mk tắc r xl bạn nhé
Giải pt:
a) \(\frac{9x-0,7}{4}-\frac{5x-1,5}{7}=\frac{12x-2,1}{3}\)
b) \(\frac{3x-2}{11}-\frac{x}{3}=\frac{3x-5}{7}-\frac{5x-3}{9}\)
a) \(\frac{9x-0,7}{4}\)\(-\)\(\frac{5x-1,5}{7}\)=\(\frac{12x-2,1}{3}\)
⇔\(\frac{21\left(9x-0,7\right)}{84}\)\(-\)\(\frac{12\left(5x-1,5\right)}{84}\)=\(\frac{28\left(12x-2,1\right)}{84}\)
⇒189x\(-\)14,7\(-\)60x+18=336x\(-\)58,8
⇔\(-\)207x=\(-\)62,1
⇔x=\(\frac{3}{10}\)
Vậy tập nghiệm của phương trình đã cho là:S={\(\frac{3}{10}\)}
\(\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}=\frac{3}{40}\)
\(\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}=\frac{3}{40}\)
\(\Leftrightarrow\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}=\frac{3}{40}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}=\frac{3}{40}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x+5}=\frac{3}{40}\)
\(\Leftrightarrow\frac{x+5-x-2}{\left(x+2\right)\left(x+5\right)}=\frac{3}{40}\)
\(\Leftrightarrow\frac{3}{\left(x+2\right)\left(x+5\right)}=\frac{3}{40}\Leftrightarrow\left(x+2\right)\left(x+5\right)=40\)
\(\Leftrightarrow\left(x+2\right)\left(x+5\right)=8.5=\left(-8\right).\left(-5\right)\)
<=> x + 2 = 5 hoặc x + 2 = -8
<=> x = 3 hoặc x = -10
Vậy x = 3 hoặc x = -10
Giúp t vs:
\(\frac{9x-0.7}{4}-\frac{5x-1.5}{7}=\frac{7x-1.1}{6}-\frac{5\cdot\left(0.4-2x\right)}{6}\)
\(\frac{2x-\frac{4-3x}{5}}{15}=\frac{7x-\frac{x-3}{2}}{5}-x+1\)
\(\frac{9x-0,7}{4}-\frac{5x-1,5}{7}=\frac{7x-1,1}{6}-\frac{5\left(0,4-2x\right)}{6}\)
\(\Leftrightarrow\frac{\left(9x-0,7\right)\cdot7}{4\cdot7}-\frac{\left(5x-1,5\right)\cdot4}{7\cdot4}=\frac{7x-1,1-2+10x}{6}\)
\(\Leftrightarrow\frac{63x-4,9-20x+6}{28}=\frac{7x-1,1-2+10x}{6}\)
\(\Leftrightarrow\left(63x-4,9-20x+6\right)\cdot6=28\left(7x-1,1-2+10x\right)\)
\(\Leftrightarrow378x-120x+6,6=196x-86,8+280x\)
\(\Leftrightarrow378x-120x-196x-280x=-86,8-6,6\)
\(\Leftrightarrow-218x=-93,4\)
\(\Leftrightarrow x=\frac{467}{1090}\)