Tìm số nguyên tố x,y sao cho x^2 - 2y^2 =1
Mọi người giúp mìn nha . Thanks
Tìm các số nguyên x,y sao cho x^2 - 2y^2 = 1
Giúp mìn nha mọi người . Mìn tính được kết quả rùi nhưng chưa có cách giải cụ thể. Thanks mọi người nhìu
Tìm các số nguyên tố x,y sao cho x^2 - 2y^2 =1
Giúp mìn nha. Thanks
Biến đổi bt tương đương : (x^2-1)/2 =y^2
Ta có: vì x,y là số nguyên dương nên
+) x>y và x phải là số lẽ.
Từ đó đặt x=2k+1 (k nguyên dương);
Biểu thức tương đương 2*k*(k+1)=y^2 (*);
Để ý rằng:
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là :
{1,y, y^2} ;
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1;
=>x=3.
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).
Mọi người ơi giúp em bài này nha :
Tìm các số nguyên tố x, y sao cho x^2 - 2y^2 =1
Hình như x=3, y=2 nhưng mà em chưa có cách giải cụ thể. Hi vọng mọi người sẽ giúp em . Thanks nhìu lắm
tìm mọi cặp số nguyên tố (x,y) sao cho: 2y2+1=x2
ta thấy \(2y^2+1\)là số lẻ \(\Rightarrow x^2\)là số lẻ\(\Rightarrow\)x là số lẻ nên x=2k+1 với k là số tự nhiên khác 0.\(\Rightarrow2y^2+1=\left(2k+1\right)^2\Leftrightarrow2y^2+1=4k^2+4k+1\)\(\Rightarrow2y^2=4\left(k^2+k\right)\Rightarrow y^2=2\left(k^2+k\right)\)\(\Rightarrow\)y chẵn \(\Rightarrow\)y=2 \(\Rightarrow\)x=3
x2-2y2=1
=>x2-1=2y2
=>x2-12=2y2
=>(x-1)(x+1)=2y2=y.2y
+)(x-1)(x+1)=2y2
=>x-1=2 và x+1=y2
=>x=3 và x+1=y2
Có x=3,thay vào x+1=y2=>3+1=y2=>y2=4=>y E {-2;2},Mà y là số nguyên tố=>y=2
+)(x-1)(x+1)=y.2y
=>x-1=y và x+1=2y
=>x=y+1 và x+1=2y
Có x=y+1,thay vào x+1=2y => (y+1)+1=2y=>y+2=2y=>2y-y=2=>y=2
do đó x=2+1=>x=3
Vậy tất cả cặp số nguyên tố (x;y) thỏa mãn đề bài là (3;2)
Tìm số nguyên x,y sao cho x-2xy+y = 0
Tìm mọi số nguyên tố thỏa mãn \(x^2-2y^2=1\)
a) x-2xy+y=0
=> x-(2xy-y)=0
=> x- y(2x-1)=0
=> 2x-2y(2x-1)=0
=>( 2x-1) -2y(2x-1)=-1
=> (2x-1)(1-2y)=-1
=> ( 2x-1 ; 1-2y ) = ( -1 ;1 ) ; (1;-1 )
=> (x;y)=( 0 ; 0 ) ; ( 1;1)
b) x2 - 2y2 = 1
=> x2 - 1 = 2y2 => (x - 1).(x + 1) = 2y2 (1)
Xét tổng (x - 1) + (x + 1) = 2x là số chẵn => x - 1 ; x + 1 cùng tích chẵn hoặc lẻ. (2)
Từ (1), (2) => x - 1; x + 1 cùng là số chẵn.
=> (x - 1).(x + 1) là số chẵn <=> 2y2 là số chẵn <=> y2 là số chẵn.
Mà y là số nguyên tố => y = 2. Khi đó x = 1 + 2.22 = 9 => x = 3
Vậy x = 3 và y = 2
x2-2y2=1
=>x2=2y2+1
=> x2 lẻ=>x=2k+1
=>4k2+4k+1=1+2y2=>2y2 chia hết cho 4=> y=2
=>x=3
ta có :
x-2xy+y=0
2x-4xy+2y=0.2 (nhân 2 vế với 2 )
2x-4xy+2y-1=0-1 ( trừ 2 vế cho 1 )
2x-4xy+2y-1 = -1
(2y-1)-4xy-2x=-1
(2y-1)-2x.(2y-1)=-1
(2y-1).(1-2x)=-1
xét 2 TH 1; 2y-1=1 thì 1-2x=-1
th2 2y-1=-1 thì 1-2x=1
a) tìm các số nguyên tố x,y sao cho :51x+26y=2000
b)tìm số tự nhiên x,y biết :7(x-2004)2=23-y2
c)tìm x,y nguyên biết : xy+3x-y=6
d)tìm mọi số nguyên tố thỏa mãn:x2-2y2=1
d. Câu hỏi của Black - Toán lớp 7 - Học toán với OnlineMath
tìm n dương sao cho \(25^{n^2-3n+1}-12\) là số nguyên tố giúp mik vs mọi người ơi, thanks trước nhé
Lời giải:
Ta thấy $n,n-3$ khác tính chẵn lẻ nên $n(n-3)$ chẵn
$\Rightarrow n^2-3n+1$ lẻ. Do đó:
$25\equiv -1\pmod{13}$
$\Rightarrow 25^{n^2-3n+1}\equiv (-1)^{n^2-3n+1}\equiv -1\pmod {13}$
$\Rightarrow 25^{n^2-3n+1}-12\equiv -13\equiv 0\pmod {13}$
Vậy $25^{n^2-3n+1}-12$ luôn chia hết cho $13$ với mọi $n$ nguyên dương
Do đó để nó là snt thì $25^{n^2-3n+1}-12=13$
$\Leftrightarrow n^2-3n+1=1$
$\Leftrightarrow n(n-3)=0$
$\Leftrightarrow n=3$ (do $n$ nguyên dương)
Tìm các số nguyên tố x,y sao cho x2-2y2-1=0
Giúp với
Tìm số nguyên x,y sao cho x-2xy+y = 0
Tìm mọi số nguyên tố thỏa mãn \(x^2-2y^2=1\)
4 like cho 2 câu, 2 like cho 1 câu
nhanh thì 3 like chậm thì 2 like