Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Duy Khang
Xem chi tiết
༺༒༻²ᵏ⁸
31 tháng 10 2021 lúc 18:00

\(A=2+2^2+2^3+...+2^{100}\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)

\(A=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)

\(A=6+2^2.6+...+2^{98}.6\)

\(A=6\left(1+2^2+...+2^{98}\right)\)

Có : \(6⋮6\)

\(\Rightarrow A=6\left(1+2^2+...+2^{98}\right)⋮6\)

\(\Rightarrow A⋮6\)

Khách vãng lai đã xóa
Đinh Lê Tiến Thành
11 tháng 10 2022 lúc 15:36

suuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

 

Khuất Ngọc Hà
16 tháng 10 2024 lúc 16:00

A= 2 + 2\(^2\) + 2\(^3\) + .... + 2\(^{100}\)

A = (2 + 2\(^2\)) + (2\(^3\) + 2\(^4\)) + .... + (2\(^{99}\) + 2\(^{100}\))

\(\)A = (2 + 2\(^2\)) + 2\(^2\)(2 + 2\(^2\)) +....+ 2\(^{98}\) (2 + 2\(^2\))

A = 6 + 2\(^2\).6 + .... + 2\(^{98}\).6

A = 6 (1 + 2\(^2\) + .... + 2\(^{98}\)\(⋮\) 6

Nguyễn Tường Vi
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 11 2023 lúc 5:18

\(A=2+2^2+2^3+2^4+...+2^{100}\)

\(=2+\left(2^2+2^3+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)

\(=2+2^2\left(1+2+2^2\right)+...+2^{98}\left(1+2+2^2\right)\)

\(=2+7\cdot\left(2^2+2^5+...+2^{98}\right)\)

=>A không chia hết cho 7 mà là chia 7 dư 2 nha bạn

tong thi hong tham
Xem chi tiết
Trần Anh Tuấn
17 tháng 11 2021 lúc 20:46

con khong biet

Khách vãng lai đã xóa
Munh
26 tháng 12 2022 lúc 21:46

Sai hết :)

TRẦN VĂN THIỆN
12 tháng 11 lúc 17:33

Có: \(\frac{1}{2^{2}} < \frac{1}{1.2} ; \frac{1}{3^{2}} < \frac{1}{2.3} ; . . . ; \frac{1}{8^{2}} < \frac{1}{7.8}\)

\(\Rightarrow B < \frac{1}{1.2} + \frac{1}{2.3} + . . . + \frac{1}{7.8}\)

\(\Rightarrow B < 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + . . . + \frac{1}{7} - \frac{1}{8}\)

\(\Rightarrow B < 1 - \frac{1}{8} < 1\)

\(\Rightarrow B < 1\) \(\Rightarrow đ p c m\)


Trần Phú
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
6 tháng 10 2020 lúc 19:41

a = 20 + 22 + 24 + ... + 218

= 1 + 22 + 24 + ... + 218

= ( 1 + 22 ) + ( 24 + 26 ) + ... + ( 216 + 218 )

= 5 + 24( 1 + 22 ) + ... + 216( 1 + 22 )

= 5.1 + 24.5 + ... + 216.5

= 5( 1 + 24 + ... + 216 ) chia hết cho 5 ( đpcm )

Khách vãng lai đã xóa
Chippii
Xem chi tiết
Hồ Thị Quỳnh Tiên
9 tháng 8 2017 lúc 17:38

S=1+7+7^2+7^3+...+7^100+7^101

   =(1+7)+7^2(1+7)+...+7^100(1+7)

   =8+7^2.8+...+7^100.8

   =8.(1+7^2+...+7^100) chia hết cho 8 

Vậy S chia hết cho 8

     

Nguyễn Thị Hải
9 tháng 8 2017 lúc 19:24

a.S=4+4^2+4^3+4^4+...+4^99+4^100 chia hết cho 5

   S=(4+4^2)+(4^3+4^4)+...+(4^99+4^100)

   S=20+4^2*20+...+4^98

   S=20*(1+4^2+...+4^98) chia hết cho 5(đpcm)

 b.S=2+2^2+2^3+2^4+...+2^2009+2^2010CHIA HẾT CHO 6

    S=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)

    S=6+2^2.*6+...+2^2008

    S=6*(1+2^2+...+2^2008)CHIA HẾT CHO 6

  

    

tìm toi
16 tháng 8 2020 lúc 13:45

a)Cm A=10mũ99 cộng 104 chia hết cho hai và ba 

b)Cm B=10 mũ 100 cộng 17 chia hết cho 9

c)Cm 10 mũ 11 cộng với 8 chia hết cho 18 với n thuộc z và n bé hơn hoặc bằng 2

mong mọi người trả lời giúp mik cảm ơn các bạn

Khách vãng lai đã xóa
Phạm Quỳnh Hương
Xem chi tiết
Đỗ Nụ
29 tháng 10 2021 lúc 17:35

Tôi  tên  là  Ngọc  Anh  . Năm  nay  Tôi 11 tuổi.  Tôi  không  biết  bài  này  

Khách vãng lai đã xóa
Nguyễn Minh Đức
28 tháng 10 2022 lúc 19:27

câu a của bạn thiếu 2 mũ 2

 

Uông Nhật Huy
31 tháng 10 2023 lúc 19:19

67aiijajjhq

Nguyễn Thị Nguyệt Minh
Xem chi tiết
duong thi yen hoa
23 tháng 12 2024 lúc 15:22

HHehe

Lưu Minh Quân
Xem chi tiết
Xem chi tiết

bn ơi chia hết cho 21 và 15 hay là chia hết cho số 21,15 vậy?

Đàm Hoàng Hiệp
26 tháng 9 lúc 20:22

Chứng minh A chia hết cho \(21\) \(A\) được viết dưới dạng tổng: \(A=2^{1}+2^{2}+2^{3}+\dots +2^{60}\). Để chứng minh \(A\) chia hết cho \(21\), cần chứng minh \(A\) chia hết cho \(3\) và \(7\). Chứng minh A chia hết cho \(3\) \(A\) được nhóm thành các bộ \(2\) số hạng: \(A=(2^{1}+2^{2})+(2^{3}+2^{4})+\dots +(2^{59}+2^{60})\). \(A=2(1+2)+2^{3}(1+2)+\dots +2^{59}(1+2)\). \(A=2\cdot 3+2^{3}\cdot 3+\dots +2^{59}\cdot 3\). \(A=3(2+2^{3}+\dots +2^{59})\). Vì \(A\) có thừa số \(3\), nên \(A\) chia hết cho \(3\). Chứng minh A chia hết cho \(7\) \(A\) được nhóm thành các bộ \(3\) số hạng: \(A=(2^{1}+2^{2}+2^{3})+(2^{4}+2^{5}+2^{6})+\dots +(2^{58}+2^{59}+2^{60})\). \(A=2(1+2+2^{2})+2^{4}(1+2+2^{2})+\dots +2^{58}(1+2+2^{2})\). \(A=2\cdot 7+2^{4}\cdot 7+\dots +2^{58}\cdot 7\). \(A=7(2+2^{4}+\dots +2^{58})\). Vì \(A\) có thừa số \(7\), nên \(A\) chia hết cho \(7\). Vì \(A\) chia hết cho \(3\) và \(A\) chia hết cho \(7\), và \(3\) và \(7\) là hai số nguyên tố cùng nhau, nên \(A\) chia hết cho \(3\cdot 7=21\). Chứng minh A chia hết cho \(15\) Để chứng minh \(A\) chia hết cho \(15\), cần chứng minh \(A\) chia hết cho \(3\) và \(5\). Chứng minh A chia hết cho \(3\) Phần này đã được chứng minh ở trên. \(A\) chia hết cho \(3\). Chứng minh A chia hết cho \(5\) \(A\) được nhóm thành các bộ \(4\) số hạng: \(A=(2^{1}+2^{2}+2^{3}+2^{4})+(2^{5}+2^{6}+2^{7}+2^{8})+\dots +(2^{57}+2^{58}+2^{59}+2^{60})\). \(A=2(1+2+2^{2}+2^{3})+2^{5}(1+2+2^{2}+2^{3})+\dots +2^{57}(1+2+2^{2}+2^{3})\). \(A=2(1+2+4+8)+2^{5}(1+2+4+8)+\dots +2^{57}(1+2+4+8)\). \(A=2\cdot 15+2^{5}\cdot 15+\dots +2^{57}\cdot 15\). \(A=15(2+2^{5}+\dots +2^{57})\). Vì \(A\) có thừa số \(15\), nên \(A\) chia hết cho \(15\). Kết luận \(A\) chia hết cho \(21\) và \(A\) chia hết cho \(15\).

Từ Thuận Thiên
26 tháng 9 lúc 20:22

.