Cho số tự nhiên a, biết rằng a chia cho 5 dư 3. Vậy a3 chia cho 5 thì số dư là ....
Cho số tự nhiên ,biết rằng a chia cho 5 dư 3.Vậy chia cho 5 thì số dư là ...........
Giúp mình nhé.
A)tìm số tự nhiên nhỏ nhất biết rằng khi chia số này cho 29 thì dư 5 và chia cho 31 dư 28.
B)Chia 126 cho một số tự nhiên a ta được số dư là 25. Vậy số a là?
a)Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )
Tương tự: A = 31q + 28 ( q ∈ N )
Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ =>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1 => 2q = 29 – 23 = 6
=> q = 3
b)126: a dư 25=>a khác 0 ; 1;126
=>126-25=101 chia hết cho a
Mà 101=1.101
=>a=1(L) hoặc a=101(TM)
Vậy a=101
gọi số cần tìm là A :
chia cho 29 dư 5
A = 29 x p + 5 ( p \(\in\)N )
A = 31 x q + 28 ( q \(\in\)N )
nên :
29 x p + 5 = 31 x q + 28
=> 29 x ( p - q ) = 2 x q + 23
ta có :
2 x q + 23 là số lẻ
=> 29 x ( p - q ) là số lẻ
vậy p - q = 1
theo giả thiết phải tìm A nhỏ nhất :
=> 2q = 29 x ( p - q ) - 23 nhỏ nhất
=> q nhỏ nhất ( A = 31 x q + 28 )
=> p - q nhor nhất
suy ra : 2 x q = 29 x 1 - 23 = 6
=> q = 6 : 2 = 3
vậy số cần tìm là : A = 31 x q + 28 =31 x 3 + 28 = 131
cho a là số tự nhiên, biết a chia cho 5 thì dư 1, khi chia cho 7 thì dư 5. vậy số a đó là...
1. một số tự nhiên biết khi chia cho 4 ; 5 ; 6 đều dư 1 .Tìm số đó biết rằng số đó chia hết cho 7 và nhỏ hơn 400
2. Một số tự nhiên a khi chia cho 4 thì dư 3 ; chia cho 5 thì dư 4 ; chia cho thì dư 5 . Tìm số tự nhiên a biết rằng 200 nhỏ hơn hoặc bằng a và a nhỏ hơn hoặc bằng 400
1. Gọi số tự nhiên cần tìm là \(\left(a\in N\right)\)và \(a-1\)là \(BC\)của 4 ; 5 ; 6 và \(a⋮7\).Ta có:
\(BCNN\left(4;5;6\right)=60.\)
\(BC\left(4;5;6\right)=\left\{0;60;120;180;240;300;360;420;....\right\}\)
\(\Rightarrow a-1\in\left\{0;60;120;180;240;300;360;420\right\}\)
\(\Leftrightarrow a\in\left\{1;61;121;181;241;301;361;....\right\}\)
Vì \(\Rightarrow301⋮7\Rightarrow\)số tự nhiên cần tìm là : 301
2. Ta thấy \(a+1\)là BC của (4;5;6) và 201 < a + 1 < 401
=> BCNN (4,5,6) = 60 .
BC (4,5,6) = {0 ; 60 ; 120 ; 180 ; 240 ; 300 ; 360 ....}
=> a + 1 = 240 ; a + 1 = 300 hoặc a + 1 = 360 => a = {239 ; 299 ; 359}
Vậy ....
Tìm số dư khi chia số tự nhiên a cho 36, biết rằng a chia cho 4 thì dư 3 và a chia cho 9 thì dư 5.
Gọi x và y lần lượt là thương của các phép chia a cho 4 và chia a cho 9. (b,c là số tự nhiên)
Ta có: a = 4x + 3 => 27a = 108x + 81 (1)
a = 9y + 5 => 28a = 252y + 140 (2) (Cùng nhân với 28)
Lấy (2) trừ (1) ta được: 28a - 27a = 36.(7c - 3b) + 59
\(\Leftrightarrow\) a = 36. (7c - 3b + 1) + 23
Vậy a chia cho 36 dư 23.
- Ta có : a chia 4 dư 3 `=> a=4k+3 (k in NN)`
- Ta lại có : a chia 9 dư 5 `=> a-5vdots9`
`=> 4k+3-5vdots9`
`=> 4k-2vdots9`
`=> 4k-2-18 vdots9`
`=> 4k-20vdots9`
`=> 4(k-5)vdots9`
mà (4;5)=1
`=> k-5vdots9`
`=> k-5=9m (m in NN)`
`=> k=9m+5`
- Thay `k=9m+5` vào biểu thức `a=4k+3` ta có :
`a=4.(9m+5)+3`
`-> a=36m+20+3`
`-> a=36m+23`
- Vậy a chia 36 dư 23
a chia 4 dư 3 có nghĩa là thêm 1 hoặc 5 hay 9 ; 13 ; 17 ; ... sẽ chia hết cho 4
a chia 9 dư 5 có nghĩa thêm 4 hoặc 13 ; hoặc 22 ; ... cho a thì nó chia hết cho 9
Xét các chữ số có thể thêm cho a , ta thấy thêm 13 vừa chia hết cho 4 vừa chia hết cho 9 , suy ra a + 13 chia hết cho 36
Vậy a : 36 sẽ dư :
36 - 13 = 23
cho a là số tự nhiên, a chia cho 5 thì dư 1 chia cho7 thì dư 5. Vậy a là số tự nhiên nào
Cho a là số tự nhiên, biết chia 5 thì dư 1, chia 7 thì dư 5. Vậy số tự nhiên a nhỏ nhất là
Giúp cho mình cách giải với mình nghĩ hoài ko ra!!
Đặt a là số nhỏ nhất chia cho 5 dư 1 , chia 7 dư 5
Ta có : a chia cho 5 dư 1 \(\Rightarrow\)a + 9 chia hết cho 5 ( 1 )
a chia cho 7 dư 5 \(\Rightarrow\)a + 9 chia hết cho 7 ( 2 )
Từ ( 1 ) và ( 2 ) và n nhỏ nhất \(\Rightarrow\)a + 9 \(\in\)BCNN ( 5;7 ) = 35
a + 9 = 35 \(\Rightarrow\)a = 26
1. Tìm số tự nhiên nhỏ nhất biết rằng số đó khi chia cho 3, cho 4, cho 5 đều dư 2, còn chia 7 dư 3.
2. Tìm x, y nguyên biết x+y+xy=40.
3. Khi chia một số tự nhiên a chia cho 4 ta được số dư là 3 còn khi chia a cho 9 thì được số dư là 5. Tìm số dư trong phép chia a cho 36.
2, TA có:
x + y + xy = 40
=> x(y + 1) + y + 1 = 41
=> (x + 1)(y + 1) = 41
=> x + 1 thuộc Ư(41) = {1; 41}
Xét từng trường hợp rồi thay vào tìm y
Có lẽ các bạn thấy hơi dài nhưng các bạn có thể làm 1 trong 3 câu cũng được. Nhưng đừng làm sai nhé! Hihihi...
1, Gọi số cần tìm là A
A chia 3, 4, 5 dư 2 => A - 2 chia hết cho 3, 4 ,5
=> A - 2 thuộc ƯC(3, 4, 5) = {60, 120, 180,...}
Mà A chia 7 dư 3 => A - 3 chia hết cho 7
=> A = 360
1. Cho hai số tự nhiên a và b, biết a chia cho 6 dư 2 và b chia cho 6 dư 3. Chứng minh rằng ab chia hết cho 6
2. Cho a và b là hai số tự nhiên, biết a chia cho 5 dư 2 và b chia cho 5 dư 3. Chứng minh rằng ab chia cho 5 dư 1
1) a chia 6 dư 2 => a= 6k+2
b chia 6 dư 3 => b= 6k+3
=> ab=\(\left(6k+2\right)\left(6k+3\right)=36k^2+30k+6\)=> chia hết cho 6
2) a= 5k+2; b=5k+3
=> \(ab=\left(5k+2\right)\left(5k+3\right)=25k^2+25k+6=25k\left(k+1\right)+6\)
=> dễ thấy 25k(k+1) chia hết cho 5. 6 chia 5 dư 1
=> ab chia 5 dư 1