Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dang huynh
Xem chi tiết
Thanh Huong
Xem chi tiết
Trần Tích Thường
Xem chi tiết
olm
15 tháng 7 2019 lúc 12:36

bn ơi đề bài k cs d mà bắt Cm cs cả d là sao

Trần Tích Thường
15 tháng 7 2019 lúc 12:52

nhầm đầu bn nha bạn phải là \(\frac{a}{b}=\frac{c}{d}\)

Nguyễn Văn Tuấn Anh
15 tháng 7 2019 lúc 20:34

Đặt \(\frac{a}{b}=\frac{c}{d}=k\left(k\ne0\right)\Rightarrow a=kb;c=kd\) 

Thay:

\(\frac{2a^2-3ab+4b^2}{5b^2+6ab}=\frac{2k^2b^2-3kb^2+4b^2}{5b^2+6kb^2}=\frac{b^2\left(2k^2-3k+4\right)}{b^2\left(5+6k\right)}=\frac{2k^2-3k+4}{5+6k}\)

\(\frac{2c^2-3cd+4d^2}{5d^2+6cd}=\frac{d^2\left(2k^2-3k+4\right)}{d^2\left(5+6k\right)}=\frac{2k^2-3k+4}{5+6k}\) 

=>đpcm

Monkey D Luffy
Xem chi tiết
Nguyễn Viết Khánh Lâm
Xem chi tiết
Kuroba Kaito
13 tháng 1 2019 lúc 7:25

Ta có : \(\frac{a}{b}=\frac{c}{d}\)=> \(\frac{a}{c}=\frac{b}{d}\)

Đặt \(\frac{a}{c}=\frac{b}{d}=k\)=> \(\hept{\begin{cases}a=ck\\d=dk\end{cases}}\)

Khi đó, ta có : \(\frac{2\left(ck\right)^2-3\left(ck\right)\left(dk\right)+5\left(dk\right)^2}{2\left(dk\right)^2+3\left(ck\right)\left(dk\right)}=\frac{2c^2k^2-3cdk^2+5d^2k^2}{2d^2k^2+3cdk^2}=\frac{\left(2c^2-3cd+5d^2\right)k^2}{\left(2d^2+3cd\right)k^2}\)

                   = \(\frac{2c^2-3cd+5d^2}{2d^2+3cd}\)(Đpcm)

๛Ňɠũ Vị Čáէツ
Xem chi tiết
tth_new
29 tháng 10 2018 lúc 20:12

Mình hướng dẫn thôi. Chứ giờ đang bận.

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=kb\\c=kd\end{cases}}\).Rồi thay a = kb; c=kd vào từng vế. Thấy hai vế bằng nhau => đpcm

Nguyệt
29 tháng 10 2018 lúc 20:16

\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=>\frac{2a^2}{2c^2}=\frac{5b^2}{5d^2}=\frac{3ab}{3ab}=\frac{3cd}{3cd}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{2a^2}{2c^2}=\frac{5b^2}{5d^2}=\frac{3ab}{3ab}=\frac{3cd}{3cd}=\frac{2a^2-3ab+5b^2}{2b^2-3cd+5d^2}=\frac{2b^2+3ab}{2d^2+3cd}\)

\(=>\frac{2a^2-3ab+5b^2}{2b^2+3ab}=\frac{2c^2-3cd+5d^2}{2d^2+3cd}\)

Shiragami Yamato
29 tháng 10 2018 lúc 20:24

Đặt\(\frac{a}{b}=\frac{c}{d}=k\),ta có:

\(a=bk\)\(c=dk\)\(\Rightarrow\frac{2a^2-3ab+5b^2}{2b^2+3ab}=\frac{2\left(bk\right)^2-3bkb+5b^2}{2b^2+3bkb}=\frac{2b^2k^2-3b^2k+5b^2}{2b^2+3b^2k}=\frac{b^2.\left(2k^2+3k+5\right)}{b^2.\left(2+3k\right)}\)\(=\frac{2k^2+3k+5}{2+3k}\left(1\right)\)

\(\Rightarrow\frac{2c^2-3cd+5d^2}{2d^2+3cd}=\frac{2\left(dk\right)^2-3dkd+5d^2}{2d^2+3dkd}=\frac{2d^2k^2-3d^2k+5d^2}{2d^2+3d^2k}=\frac{d^2.\left(2k^2+3k+5\right)}{d^2.\left(2+3k\right)}\)

\(=\frac{2k^2+3k+5}{2+3k}\)(2)

Từ (1) và (2) suy ra:

\(\frac{2a^2-3ab+5b^2}{2b^2+3ab}=\frac{2c^2-3cd+5d^2}{2d^2+3cd}\)(đpcm)

Đặng Quốc Huy
Xem chi tiết
Dương Kim Nam
25 tháng 3 2020 lúc 13:55

Bạn tham Khảo: https://hoc24.vn/hoi-dap/question/230602.html

Khách vãng lai đã xóa
Hoàng Trịnh MInh Vi
Xem chi tiết
Nguyễn Thị Cẩm Ly
Xem chi tiết