Cho \(\Delta ABC\) cân tại A. Qua A kẻ đường thẳng cắt BC tại D. Biết\(\Delta ABD\) và\(\Delta ADC\) là tam giác cân. Tính góc BAC
Cho tam giác ABC cân tại A. Qua A, kẻ một đường thẳng cắt BC tại D. Biết tam giác ABD và tam giác ADC là hai tam giác cân. Tính góc BAC
cho \(\Delta\)ABC vuông cân tại A. Kẻ AM phân giác góc BAC. Qua A kẻ đường thẳng d không cắt cạnh BC. Gọi M,N lần lượt là hình chiếu của H trên d. Chứng minh \(\Delta\)MHN vuông cân tại H
Cho tam giác ABC cân tại A (Góc A < 90o). Hai đường cao BD và CE cắt nhau tại H. Tia AH cắt BC tại I
a. CM: \(\Delta ABD=\Delta ACE\)
b. CM: I là trung điểm của BC
c. Từ C kẻ đường thẳng d vuông góc với AC, d cắt AH tại F. CMR:CB là tia phân giác của góc FCH
d. Gỉa sử góc BAC bằng 60o và AB=4cm. Tính khoảng cách từ B đến dường thẳng CF
Cho tam giác ABC vuông cân tại A. Gọi D là 1 điểm biết trên cạnh BC ( D khác B và C ). Vẽ 2 tia Bx; Cy vuông góc với BC và nằm trên cùng 1 nửa mặt phẳng BC và điểm A. Qua A, vẽ đường thẳng vuông góc với AD cắt Bx tại M và cắt Cy tại N. CMR:
a) \(\Delta AMB=\Delta ADC\)
b) A là trung điểm của đoạn thẳng MN.
a) \(\Delta ABC\)vuông cân tại A
\(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}=45^o\end{cases}}\)
\(\widehat{BAD}\)và \(\widehat{DAC}\)là 2 góc phụ nhau
\(\widehat{NAC}\)và \(\widehat{DAC}\)là 2 góc phụ nhau
\(\Rightarrow\widehat{BAD}=\widehat{NAC}\)
Ta có
\(\widehat{DCA}\)phụ \(\widehat{ACN}\)mà \(\widehat{C}=45^0\)
\(\Rightarrow\widehat{ACN}=45^0\)
\(\Rightarrow\widehat{ACN}=\widehat{B}=45^0\)
Xét \(\Delta AMB\)và \(\Delta ADC\)có:
\(\widehat{ACN}=\widehat{B}=45^0\)
AB=AC
\(\widehat{BAD}=\widehat{CAN}\)
\(\Rightarrow\Delta AMB=\Delta ADC\)
Bài 1: Cho tam giác ABC cân tại A, gọi D là trung điểm của BC, qua A kẻ đường trẳng d song song với BC
a) Chứng minh: \(\Delta\)ABD=\(\Delta\)ACD
b) Chứng minh: AD là tia phân giác của góc BAC
c) Chứng minh: AD \(\perp\) d
a: Xét ΔABD và ΔACD có
AB=AC
AD chung
BD=CD
Do đó: ΔABD=ΔACD
b: Ta có: ΔABC cân tại A
mà AD là đường trung tuyến
nên AD là đường phân giác
c: Ta có: ΔABC cân tại A
mà AD là đường trung tuyến
nên AD là đường cao
=>AD⊥BC
hay AD⊥d
Tam giác \(ABC\) có \(AB = 6cm,AC = 8cm,BC = 10cm\). Đường phân giác của góc \(BAC\) cắt cạnh \(BC\) tại \(D\).
a) Tính độ dài các đoạn thẳng \(DB\) và \(DC\).
b) Tính tỉ số diện tích giữa \(\Delta ADB\) và \(\Delta ADC\).
a) Ta có: \(BD + DC = BC \Rightarrow DC = BC - BD = 10 - BD\)
Vì \(AD\) là phân giác của góc \(BAC\) nên theo tính chất đường phân giác ta có:
\(\frac{{BD}}{{DC}} = \frac{{AB}}{{AC}} \Leftrightarrow \frac{{BD}}{{10 - BD}} = \frac{6}{8} \Leftrightarrow 8BD = 6.\left( {10 - BD} \right) \Rightarrow 8BD = 60 - 6BD\)
\( \Leftrightarrow 8BD + 6BD = 60 \Leftrightarrow 14BD = 60 \Rightarrow BD = \frac{{60}}{{14}} = \frac{{30}}{7}\)
\( \Rightarrow DC = 10 - \frac{{30}}{7} = \frac{{40}}{7}\)
Vậy \(BD = \frac{{30}}{7}cm;DC = \frac{{40}}{7}cm\).
b) Kẻ \(AE \bot BC \Rightarrow AE\) là đường cao của tam giác \(ABC\).
Vì \(AE \bot BC \Rightarrow AE \bot BD \Rightarrow AE\)là đường cao của tam giác \(ADB\)
Diện tích tam giác \(ADB\) là:
\({S_{ADB}} = \frac{1}{2}BD.AE\)
Vì \(AE \bot BC \Rightarrow AE \bot DC \Rightarrow AE\)là đường cao của tam giác \(ADC\)
Diện tích tam giác \(ADC\) là:
\({S_{ADC}} = \frac{1}{2}DC.AE\)
Ta có: \(\frac{{{S_{ADB}}}}{{{S_{ADC}}}} = \frac{{\frac{1}{2}AE.BD}}{{\frac{1}{2}AE.CD}} = \frac{{BD}}{{DC}} = \frac{{\frac{{30}}{7}}}{{\frac{{40}}{7}}} = \frac{3}{4}\).
Vậy tỉ số diện tích giữa \(\Delta ADB\) và \(\Delta ADC\) là \(\frac{3}{4}\).
Cho \(\Delta ABC\)vuông tại A, AB = 9cm, AC = 12cm. Trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ đường thẳng qua D vuông góc với BC, đường thẳng này cắt AC ở E và cắt AB ở K
a) Tính BC
b) Chứng minh \(\Delta ABE=\Delta DBE\)và suy ra BE là tia phân giác \(\widehat{ABC}\)
c) Kẻ đường thẳng qua A vuông góc với BC tại H. Đường thẳng này cắt BE ở M. Chứng minh \(\Delta AME\)cân
a) Do tam giác ABC vuông tại A
=> Theo định lý py-ta-go ta có
BC^2=AB^2+AC^2
=>BC=\(\sqrt{AB^2+AC^2}\)= \(\sqrt{9^2+12^2}\)=\(\sqrt{225}\)=15
Vậy cạnh BC dài 15 cm
b)Xét Tam giác ABE vuông tại A và tam giác DBE vuông tại D có
BE là cạnh chung
AB=BD(Giả thiết)
=>Tam giác ABE=Tam giác DBE(CGV-CH)
GT | △ABC (BAC = 90o) , AB = 9 cm , AC = 12 cm D BC : BD = BA. DK ⊥ BC (K AB , DK ∩ AC = { E } AH ⊥ BC , AH ∩ BE = { M } |
KL | a, BC = ? b, △ABE = △DBE ; BE là phân giác ABC c, △AME cân |
Bài giải:
a, Xét △ABC vuông tại A có: BC2 = AB2 + AC2 = 92 + 122 = 81 + 144 = 225 => BC = 15 (cm)
b, Xét △ABE vuông tại A và △DBE vuông tại D
Có: AB = BD (gt)
BE là cạnh chung
=> △ABE = △DBE (ch-cgv)
=> ABE = DBE (2 góc tương ứng)
Mà BE nằm giữa BA, BD
=> BE là phân giác ABD
Hay BE là phân giác ABC
c, Vì △ABE = △DBE (cmt)
=> AEB = DEB (2 góc tương ứng)
Vì DK ⊥ BC (gt)
AH ⊥ BC (gt)
=> DK // AH (từ vuông góc đến song song)
=> AME = MED (2 góc so le trong)
Mà MED = MEA (cmt)
=> AME = MEA
=> △AME cân
Cho tam giác ABC vuông tại A, kẻ AH vuông góc BC. Trên tia đối tia AH lấy điểm D sao cho AD = BC. Trên tia đối của tia CA lấy điểm E sao cho AB = CE. Đường thẳng vuông góc với BD kẻ từ A cắt BD tại I, cắt DE tại K.
1, Chứng minh \(\Delta ABD=\Delta CEB\)
2, Chứng minh \(\Delta BDE\)vuông cân
3, Tính \(\widehat{CKE}\)
4, Giả sử tam giác ABC vuông cân tại A. Tính DE khi KC = 1cm
Cho tam giác ABC cân tại A. Các tia phân giác của góc B và góc C cắt nhau tại O. Qua A kẻ đường thẳng d song song với BC. Tia BO cắt AC và d lần lượt tại M và D. Tia CO cắt AB và d lần lượt tại N và E. Chứng minh :
1. \(\Delta ABM=\Delta ACN\)
2. A là trung điểm của đoạn thẳng DE
3. 3 đường thẳng AO, BE, CD cùng đi qua 1 điểm