Help help (2x-1)^2020=(2x-1)^2021
1+2-3-4+5+6-7-8-....-2019-2020+2021+2022 help
Ta có: 1+2-3-4+5+6-7-8+.....-2019-2020+2021+2022
=1+(2-3-4+5)+(6-7-8+9)+.....+(2018-2019-2020+2021)+2022
=1+0+0+.....+0+2022
=2023
Toán 6:
Không dùng máy tính hãy so sánh A= 5^2020+1/5^2021+1
và B=10^2019+1/10^2020+1
help mik dc ko ;-;
ta có :
A = \(\dfrac{5^{2020}+1}{5^{2020}+1}\)
B = \(\dfrac{5^{2019}+1}{5^{2020}+1}\)
\(\Leftrightarrow\) B < A
( 1/2019 + 2011/2020 + 4012/2021) x (1/2 - 1/3-1/6 )
help meeeeee............
( 1/2019 + 2011/2020 + 4012/2021) x (1/2 - 1/3-1/6 )
= ( 1/2019 + 2011/2020 + 4012/2021) x 0
=0
Please help me, chiều nay 5h tui đi học rùi . Giải giúp tui ik mừ.
Giải phương trình :
\(a,\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=\sqrt{1+2020^2+\frac{2020^2}{2021^2}}+\frac{2020}{2021}\)
\(b,\sqrt{x+2+2\sqrt{x+1}}+\sqrt{x+10-6\sqrt{x+1}}=2\sqrt{x+2-2\sqrt{x+1}}\)
\(c,\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=x+\frac{3}{2}\)
giải phương trình :\(\sqrt{x^2+1-2x}+\sqrt{x^2+4x+4}=\sqrt{1+2020^2+\frac{2020^2}{2021^2}}+\frac{2020}{2021}\)
Đk: \(\forall x\in R\)
Ta có:\(\sqrt{x^2+1-2x}+\sqrt{x^2+4x+4}=\sqrt{1+2020^2+\frac{2020^2}{2021^2}}+\frac{2020}{2021}\)
<=> \(\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+2\right)^2}=\sqrt{1+2020^2+2.2020+\frac{2020^2}{2021^2}-2.2020}+\frac{2020}{2021}\)
<=> \(\left|x-1\right|+\left|x+2\right|=\sqrt{\left(1+2020\right)^2+\frac{2020^2}{2021^2}-2.2020}+\frac{2020}{2021}\)
<=> \(\left|x-1\right|+\left|x+2\right|=\sqrt{\left(2021-\frac{2020}{2021}\right)^2}+\frac{2020}{2021}\)
<=> \(\left|x-1\right|+\left|x+2\right|=\frac{2021^2-2020}{2021}+\frac{2020}{2021}\)
<=> \(\left|x-1\right|+\left|x+2\right|=2021\)
Lập bảng xét dầu
x -2 1
x - 1 - | - 0 +
x + 2 - 0 + | -
Xét các TH xảy ra :
TH1: x \(\le\)-2 => pt trở thành: 1 - x - x - 2 = 2021
<=> -2x = 2022 <=> x = -1011 (tm)
TH2: \(-2< x\le1\) => pt trở thành: 1 - x + x + 2 = 2021
<=> 0x = 2018 (vô lí) => pt vô nghiệm
TH3: \(x>1\) => pt trở thành: x - 1 + x + 2 = 2021
<=> 2x = 2020 <=> x = 1010 (tm)
Vậy S = {-1011; 1010}
a) 3(-2x+1)-2020° = -2(2-x)-3.
Help me please
3(-2x+1)-2020^0=-2(2-x)-3
<=> -6x+3-1=-4+2x-3
<=> -6x-2=2x-7
<=>-6x-2x=-7+2
<=>-8x=-5
<=>x=5/8
tìm gtnn ; c = 2020 l 2x - 3 l + 2021 l 3y + 1 l + 2021
\(C\ge2021\)
Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}2x-3=0\\3y+1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=-\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(C_{Min}=2021\) khi \(x=\dfrac{3}{2}\) và \(y=-\dfrac{1}{3}\)
Vì |2x - 3| \(\ge\) 0, \(\forall\)x ; |3y + 1| \(\ge\) 0,\(\forall\)y
\(\Rightarrow\) C = 2020|2x - 3| + 2021|3y + 1| + 2021 \(\ge\) 2021, \(\forall\)x,y
Dấu " = " xảy ra khi và chỉ khi :
\(\left\{{}\begin{matrix}\left|2x-3\right|=0\\\left|3y+1\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=-\dfrac{1}{3}\end{matrix}\right.\)
Vậy Cmin = 2021 với \(x=\dfrac{3}{2};y=-\dfrac{1}{3}\)
Giải phương trình
\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=\sqrt{1+2020^2+\frac{2020^2}{2021^2}}+\frac{2020}{2021}\)
Giải phương trình:
\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=\sqrt{1+2020^2+\frac{2020^2}{2021^2}}+\frac{2020}{2021}\)