Nếu P và 10P cộng 1 là 2 số nguyên tố thì 5P cộng 6 chia hết cho 6
Chứng minh rằng Nếu p là số nguyên tố >3 và 10p + 1 là số nguyên tố thì 5p + 1 chia hết cho 6
ét 3 số tự nhiên liên tiếp: 10.p;10+1;2.(5p+1)
=> Có 1 số chia hết cho 3; một số chia hết cho 2
Vì p và 10p+1 là 2 sồ nguyên tố (p>3)
=>p và 10p+1 ko chia hết cho 3 và 2. Vì 10 và 3 nguyên tố cùng nhau; 10 chia hết cho 2
=>10p và 10p+1 ko chia hết cho 3; 10p chia hết cho 2; 10p+1 ko chia hết cho 2
=>10p+2 chia hết cho 3. Vì 2 chia hết cho 2=>10p+2 chia hết cho 2
Vì 2 và 3 nguyên tố cùng nhau =>5p+1 chia hết cho cả 3 và 2
Vậy 5p+1 chia hết cho 6 (đpcm)
nhấn đúng nha
CMR: Nếu p và 10p + 1 đều là 2 số nguyên tố trong đó p > 3 thì ( 5p + 1 ) chia hết cho 6
1) p nguyên tố > 3 => 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3
từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*)
mà 2 và 3 đều là những số nguêyn tố nên từ (*) => 5p+1 chia hết cho 3
mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẳn => chia hết cho 2
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau
=> 5p+1 chia hết cho 2*3 = 6
2) a nguyên tố > 3 nên là số lẻ và không chia hết cho 3
=> k phải là số chẳn, vì nếu k lẻ thì a+k chẳn và > 2 nên ko là số nguyên tố
đặt k = 3n+r (với r = 0, 1, 2)
có: thì a+k = 3n+a+r và a+2k = 6n+a+2r
* nếu a chia 3 dư 1 thì a+r chia hết cho 3 nếu r = 2 hoặc a+2r chia hết cho 3 nếu r = 1
nên ta phải có r = 0
* nếu a chia 3 dư 2 thì a+r chia hết cho 3 nếu r = 1 hoặc a+2r chia hết cho 3 nếu r = 2
=> r = 0
cả 2 trường hợp của a đều dẩn đến r = 0 => k chia hết cho 3
Vậy k chẳn, chia hết cho 3 => k chia hết cho 6
3) p và 2p+1 nguyên tố
* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố
* xét p # 3
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3)
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3
kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3
Tích tớ nha
1) p nguyên tố > 3 => 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3
từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*)
mà 2 và 3 đều là những số nguêyn tố nên từ (*) => 5p+1 chia hết cho 3
mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẳn => chia hết cho 2
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau
=> 5p+1 chia hết cho 2*3 = 6
2) a nguyên tố > 3 nên là số lẻ và không chia hết cho 3
=> k phải là số chẳn, vì nếu k lẻ thì a+k chẳn và > 2 nên ko là số nguyên tố
đặt k = 3n+r (với r = 0, 1, 2)
có: thì a+k = 3n+a+r và a+2k = 6n+a+2r
* nếu a chia 3 dư 1 thì a+r chia hết cho 3 nếu r = 2 hoặc a+2r chia hết cho 3 nếu r = 1
nên ta phải có r = 0
* nếu a chia 3 dư 2 thì a+r chia hết cho 3 nếu r = 1 hoặc a+2r chia hết cho 3 nếu r = 2
=> r = 0
cả 2 trường hợp của a đều dẩn đến r = 0 => k chia hết cho 3
Vậy k chẳn, chia hết cho 3 => k chia hết cho 6
3) p và 2p+1 nguyên tố
* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố
* xét p # 3
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3)
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3
Kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3
Tích nha
CMR : nếu p và 10p +1 đều là các số nguyên tố >3 thì 5p+1 chia hết cho 6
p nguyên tố > 3 => 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3
từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*)
mà 2 và 3 đều là những số nguêyn tố nên từ (*) => 5p+1 chia hết cho 3
mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẳn => chia hết cho 2
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau
=> 5p+1 chia hết cho (2 . 3) = 6 (đpcm)
p là số nguyên tố >3=>p=3k+1;3k+2
xét p=3k+2=>10p+1=10(3k+2)+1
=3.10k+20+1=3.10k+21=3(10k+7) chia hết cho 3
=>10p+1 là hợp số(trái giả thuyết)
=>p=3k+1
=>5p+1=5(3k+1)+1=3.5k+5+1=3.5k+6=3(5k+2) chia hết cho 3 (1)
p>3=>p=2q+1
=>5p+1=5(2q+1)+1=10q+5+1=10q+6=2(5q+3) chia hết cho 2 (2)
từ (1);(2)=>5p+1 chia hết cho 2;3
vì (2;3)=1=>5p+1 chia hết cho 6
=>đpcm
chứng minh rằng nếu p (p>3) và 10p+1 là số nguyên tố thì 5p+1 luôn chia hết cho 6
p nguyên tố > 3
=> 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3
Từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*) mà 2 và 3 đều là những số nguyên tố nên từ (*)
=> 5p+1 chia hết cho 3
Mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẳn => chia hết cho 2
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau
=> 5p+1 chia hết cho 2*3 = 6
Chúc bn may man vi mk chang biet lam dau
Chứng minh rằng nếu p và 10p + 1 đều là hai số nguyên tố trong đó p>3 thì 5p +1 chia hết cho 6
chứng minh rằng: nếu p (p>3) và 10p + 1 đều là hai số nguyên tố thì số 5p + 1 bao giờ cũng chia hết cho 6
Xét 3 số tự nhiên liên tiếp: 10.p;10+1;2.(5p+1)
=> Có 1 số chia hết cho 3; một số chia hết cho 2
Vì p và 10p+1 là 2 sồ nguyên tố (p>3)
=>p và 10p+1 ko chia hết cho 3 và 2. Vì 10 và 3 nguyên tố cùng nhau; 10 chia hết cho 2
=>10p và 10p+1 ko chia hết cho 3; 10p chia hết cho 2; 10p+1 ko chia hết cho 2
=>10p+2 chia hết cho 3. Vì 2 chia hết cho 2=>10p+2 chia hết cho 2
Vì 2 và 3 nguyên tố cùng nhau =>5p+1 chia hết cho cả 3 và 2
Vậy 5p+1 chia hết cho 6 (đpcm)
nhấn đúng nha
p nguyên tố > 3
=> 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3
Từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*)
Mà 2 và 3 đều là những số nguyên tố nên từ (*) => 5p+1 chia hết cho 3
Mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẵn => chia hết cho 2
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau
=> 5p+1 chia hết cho 2*3 = 6
b1: Chứng minh rằng:
Nếu p và 10p+1 đều là số nguyên tố (p>3) thì 5p +1 chia hết cho 6
Tìm các số nguyên tố p là số nguyên tố lớn hơn 3 và 10p + 1 cũng là số nguyên tố thì số 5p + 1 chia hết cho 6
p nguyên tố > 3 => 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3
từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*)
mà 2 và 3 đều là những số nguêyn tố nên từ (*) => 5p+1 chia hết cho 3
mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẳn => chia hết cho 2
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau
=> 5p+1 chia hết cho 2*3 = 6
Chúc bn hok tốt
+ Do p nguyên tố > 3 => p chia 3 dư 1 hoặc 2
Nếu p chia 3 dư 2 thì p = 3k + 2 (k thuộc N*) => 10p + 1 = 10.(3k + 2) + 1 = 30k + 20 + 1 = 30k + 21 chia hết cho 3, là hợp số, loại
=> p = 3k + 1
=> 5p + 1 = 5.(3k + 1) + 1 = 15k + 5 + 1 = 15k + 6 chia hết cho 3 (1)
+ Do p nguyên tố > 3 => p lẻ => 5p lẻ => 5p + 1 chẵn => 5p + 1 chia hết cho 2 (2)
Từ (1) và (2); do (3;2)=1 => 5p + 1 chia hết cho 6 (đpcm)
Bài này là chứng minh chứ ko fai tìm nha bn
bài 1: một số gồm 60 chữ số, trong đó có 30 chữ số 0 và 30 chữ số 1. Hỏi số đó có là số chính phương ko?
bài 2: CMR: nếu p là số nguyên tố lớn hơn 3 và 10p+1 cũng là số nguyên tố thì 5p+1 chia hết cho 6.
p là số nguyên tố, p>3 => p không chia hết cho 3, lại có (10;3)=1 => 10p không chia hết cho 3 (1)
10p+1 là số nguyên tố, 10p+1>3 => 10p+1 không chia hết cho 3 (2)
Ta có: 10p(10p+1)(10p+2) là tích 3 số tự nhiên liên tiếp => 10p(10p+1)(10p+2) chia hết cho 3 (3)
Từ (1),(2),(3) => 10p+2 chia hết cho 3 <=> 2(5p+1) chia hết cho 3
Mà (2;3)=1 Nên 5p+1 chia hết cho 3 (*)
p là số nguyên tố, p>3 => p lẻ => 5p lẻ => 5p+1 chẵn => 5p+1 chia hết cho 2 (**)
Ta có: (2;3)=1 (***)
Từ (*),(**),(***) => 5p+1 chia hết cho 6.