x/2 = y/3 : y/5 = z/4 và x - y + z = -49
tìm x,y,z,t (nếu có)từ các tỉ lệ thức sau
a)x:y:z:t=2:3:4:5 và x+y+z+t=-42
b)x/2=y/3;y/5=z/4 và x-y+z=-49
c) x/2=y/3;y/4=z/5 và x+y-z=10
a) x:y:z:t=2:3:4:5
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}\)
Áp dụng tính ... , ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}=\frac{x+y+z+t}{2+3+4+5}=\frac{-42}{14}=-3\)
\(\Rightarrow x=-6;y=-9;z=-12;t=-15\)
b) c ) tương tự
Bài 1: x/3=y/4 ; y/5=z/7 và 2x+3y-z=124
Bài 2: x/2=y/3=z/5 và x+y+z=49
Bài 3: x/2=y/3=z/5 và x*y*z=810
Bài 4:x/5 =y/3 và x2-y2=4
Bài 2:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và\(x+y+z=49\)
Áp dụng tính chất của dãy tỷ số bằng nhau
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{49}{10}\)
\(\Rightarrow\hept{\begin{cases}x=2.\frac{49}{10}=\frac{49}{5}\\y=3.\frac{49}{10}=\frac{147}{10}\\x=5.\frac{49}{10}=\frac{49}{2}\end{cases}}\)
\(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7};2x+3y-z=124\)
Ta có:
\(\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\)
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x}{30}=\frac{3y}{60}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{124}{62}=2\)
\(\Rightarrow\hept{\begin{cases}x=15.2=30\\y=20.2=40\\z=28.2=56\end{cases}}\)
Bài 3:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5};x.y.z=810\)
Đặt \(n=\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Ta có:
\(\frac{x}{2}=n\Rightarrow x=2n\)
\(\frac{y}{3}=n\Rightarrow y=3n\)
\(\frac{z}{5}=n\Rightarrow z=5n\)
Theo đề ra \(x.y.z=810\)
\(\Rightarrow2n.3n.5n=810\Rightarrow2.3.4.n.n.n=810\Rightarrow30.n^3=810\Rightarrow n^3=27\Rightarrow n=3\)
Do vậy: \(\Rightarrow\hept{\begin{cases}x=2.3=6\\y=3.3=9\\z=5.3=15\end{cases}}\)
Tìm x,y,z biết
a,x/2=y/3=z/4 và x+z=18
b,x/5=y/6=z/7 và x-y=36
c,x/4=y/-7 và x-y=33
d,x/5=y/-6=z/7 và 2x+y-z=49
e,x+1/2=y+2/3=z+3/4 và x+y+z=21
g,x/4=y/3 và x*y=12
h,x/5=y/3 và x^2-y^2=16
a) ADTCDTSBN
có: \(\frac{x}{2}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3.\)
=> x/2 = 3 => x = 6
y/3 = 3 => y = 9
z/4 = 3 => z = 12
KL:...
b,c làm tương tự nha
d) ta có: \(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{2x}{10}\)
ADTCDTSBN
có: \(\frac{2x}{10}=\frac{y}{-6}=\frac{z}{7}=\frac{2x+y-z}{10+\left(-6\right)-7}=\frac{49}{-3}\)
=>...
e) ADTCDTSBN
có: \(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+3}{4}=\frac{x+1+y+2+z+3}{2+3+4}=\frac{\left(x+y+z\right)+\left(1+2+3\right)}{9}\)
\(=\frac{21+6}{9}=\frac{27}{9}=3\)
=>...
g) ta có: \(\frac{x}{4}=\frac{y}{3}=k\Rightarrow\hept{\begin{cases}x=4k\\y=3k\end{cases}}\)
mà xy = 12 => 4k.3k = 12
12.k2 = 12
k2 = 1
=> k = 1 hoặc k = -1
=> x = 4.1 = 4
y = 3.1 = 3
x=4.(-1) = -4
y=3.(-1) = -3
KL:...
h) ta có: \(\frac{x}{5}=\frac{y}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)
ADTCDTSBN
có: \(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2-y^2}{25-9}=\frac{16}{16}=1\)
=>...
Giúp mk gấp nha!
a) (x-5)^2.|y^2-81|=0
b) 2x=3y và 5y=2z; 3x+y-z=-360
c) x/2=y/3; y/5=z/4 và x-y+z=-49
d) x/10=y/6=z/21 và 5x+y-2z=28
e) x/5=y/4 và x^2- y^2=1
f) 2x/3=3y/4=4z/5 và x+y+z=49
a) \(\left(x-5\right)^2\cdot\left|y^2-81\right|=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\y^2-81=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\y=+-9\end{cases}}}\)
b) \(2x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\)
\(5y=2z\Leftrightarrow\frac{y}{2}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{3}=\frac{y}{2}=\frac{z}{5}=\frac{3x+y-z}{9+2-5}=\frac{-360}{6}=-60\)
Tự tìm x,y,z nhé
c) \(\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{4}\Leftrightarrow\frac{y}{15}=\frac{z}{12}\)
(làm tương tự câu b)
d) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Leftrightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\left(..........\right)\)
đến đây chắc dễ rồi
e) \(\frac{x}{5}=\frac{y}{4}\Leftrightarrow x=\frac{5y}{4}\)
Thay \(x=\frac{5y}{4}\)vào biểu thức x^2 - y^2 =1
(tìm ra y sau đó thay y vào \(x=\frac{5y}{4}\)để tìm x)
f)
f) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Leftrightarrow\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}\)
Áp dụng t/c của dãy tỉ số bằng nhau tính bình thường.
x/2 = y/3 ; y/5 = z/4 và x - y +z = 49. Tìm x , y , z?
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{y}{15}=\frac{z}{12}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)
\(=\frac{x-y+x}{10-15+12}=\frac{49}{7}\)
Ta có \(\frac{x}{10}=\frac{19}{7}\Rightarrow x=\frac{49.10}{7}=70\)
\(\frac{y}{15}=\frac{19}{7}\Rightarrow y=\frac{15.49}{7}=105\)
\(\frac{z}{12}=\frac{19}{7}\Rightarrow z=\frac{12.49}{7}=84\)
Vậy x=70; y=105; z= 84
ối dồi ôi đmm
x/2=y/3;y/5=z/4 và x-y+z=-49
\(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15};\dfrac{y}{5}=\dfrac{z}{4}\Rightarrow\dfrac{y}{15}=\dfrac{z}{12}\\ \Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{10-15+12}=\dfrac{-49}{7}=-7\\ \Rightarrow\left\{{}\begin{matrix}x=-70\\y=-105\\z=-84\end{matrix}\right.\)
tìm x, y, z biết 2*x/3=3*y/4=4*z/5 và x+y+z=49
Áp dụng tính chất của dãy tỉ số bằng nhau có:
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
\(\frac{2x}{3}=12\Rightarrow x=18\)
\(\frac{3y}{4}=12\Rightarrow y=16\)
\(\frac{4z}{5}=12\Rightarrow z=15\)
Tìm x, y, z biết:
x/2 = y/3 và y/5 = z/4 và x - y + z= -49
\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{4}\)\(\Leftrightarrow\frac{x}{10}=\frac{y}{15};\frac{y}{15}=\frac{z}{12}\Leftrightarrow\)\(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)
\(\Rightarrow\frac{x-y+z}{10-15+12}=-\frac{49}{7}=-7\)
\(\Rightarrow x=-7.10=-70\)
\(y=-7.15=-105\)
\(z=-7.12=-84\)
Tìm x,y,z biết:
a) \(\dfrac{x}{5}=\dfrac{y}{2}\) và \(x-y=9\)
b) \(\dfrac{x-3}{12}=\dfrac{-3}{3-x}\)
c) \(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{4}\) và \(x-y-z=-49\)
a: Áp dụng tính chất của DTSBN, ta được:
x/5=y/2=(x-y)/(5-2)=9/3=3
=>x=15; y=6
b: =>(x-3)/12=3/(x-3)
=>(x-3)^2=36
=>(x-9)(x+3)=0
=>x=9 hoặc x=-3
c; x/2=y/3
=>x/10=y/15
y/5=z/4
=>y/15=z/12
=>x/10=y/15=z/12=(x-y-z)/(10-15-12)=-49/-17=49/17
=>x=490/17; y=735/17; z=588/17