x/2=y/3 và x^2+2xy=16
x/2=y/3 và x^2+2xy=16
Lời giải:
Đặt $\frac{x}{2}=\frac{y}{3}=t$
$\Rightarrow x=2t; y=3t$. Khi đó, thay vô điều kiện số 2:
$x^2+2xy=16$
$(2t)^2+2.2t.3t=16$
$16t^2=16$
$t^2=1=1^2=(-1)^2$
$\Rightarrow t=1$ hoặc $t=-1$
Nếu $t=1$ thì $x=2t=2; y=3t=3$
Nếu $t=-1$ thì $x=2t=-2; y=3t=-3$
cho (x+2y)(x^2-2xy+y^2)=0 và (x-2y)(x^2+2xy+4y^2)=16 tìm x và y
cho (x+2y)(x^2-2xy+y^2) = 0 và (x-2y)(x^2+2xy+y^2) = 16 . Tính A=(xy)^2016
kinh nhờ học nhà thầy Khánh à ?
mấy bạn biết thầy Khánh ak thầy mk đó
x/2=y/3 và 2x+2xy=16
=> x/2=x^2/2x
=>y/3=2xy/6x
Theo tc dãy tỉ số bằng nhau, ta có :
x^2+2xy/2x+6x=16/8x => x=2 =>y=3
Mk tự giải đc rùi thanks, tích cho mình nha !!
Tìm x và y, biết :
(x+2y)(x2-2xy+4y2)=0.
(x-y)(x2+ 2xy + 4y2)=16
cho(x+2y)(x2-2xy+4y2)=0 và (x-2y)(x2+2xy+4y2)=16
tìm x và y
Ta có \(\left(x+2y\right)\left(x^2-2xy+4y^2\right)=0\)<=> \(x^3+8y^3=0\)(1)
và \(\left(x-2y\right)\left(x^2+2xy+4y^2\right)=16\)<=> \(x^3-8y^3=16\)(2)
Lấy (1) cộng (2)
=> \(2x^3=16\)
<=> \(x^3=8\)
<=> \(x=2\)
Từ (1) <=> \(8y^3=-x^3\)
<=> \(8y^3=-8\)
<=> \(y^3=-1\)
<=> \(y=-1\)
Vậy khi \(\hept{\begin{cases}x=2\\y=-1\end{cases}}\)thì \(\hept{\begin{cases}\left(x+2y\right)\left(x^2-2xy+4y^2\right)=0\\\left(x-2y\right)\left(x^2+2xy+4y^2\right)=16\end{cases}}\).
\(\left(x+2y\right)\left(x^2-2xy+4y^2\right)=0\Leftrightarrow x^3+8y^3=0\) (1)
\(\left(x-2y\right)\left(x^2+2xy+4y^2\right)=16\Leftrightarrow x^3-8y^3=16\) (2)
TỪ (1) => \(x^3=-8y^3\) thay vào (2)
=> \(x^3+x^3=16\Leftrightarrow2x^3=16\Leftrightarrow x^3=8\Leftrightarrow x=2\)
mà \(x^3=-8y^3\Rightarrow y=-1\)
vậy x=2 và y=-1
Tìm x,y biết: (x+2y)(x^2-2xy+4y^2)=0
và (x-2y)(x^2+2xy+4y^2)=16
=> x^3 + 8y^3 = 0 (1)
và x^3 - 8y^3 = 16 (2)
Từ (1) và (2) => 2x^3 = 16 => x^3 = 8 => x = 2
Thay x^3 = 8 và (1) ta có 8 + 8y^3 = 0 => 8y^3 = -8 => Y^3 = -1 => y = -1
VẬy x = 2 ; y = -1
x2-2xy+y2-xy+yz
y-x2y-2xy2-y3
x2-25+y2+2xy
(x+y)2-(x2-y2)
x2+4x-y2+4
2xy-x2-y2+16
x2-2x-4y2-4y
Cho \(\left(x+2y\right)\left(x^2-2xy+4y^2\right)=0\) và \(\left(x-2y\right)\left(x^2+2xy+4y^2\right)=16\). Tìm x và y
https://olm.vn/hoi-dap/detail/108858274535.html
Bài tương tự gưi link ib
\(\hept{\begin{cases}\left(x+2y\right)\left(x^2-2xy+4y^2\right)=0\\\left(x-2y\right)\left(x^2+2xy+4y^2\right)=16\end{cases}}\)
<=> \(\hept{\begin{cases}x^3+8y^3=0\left(1\right)\\x^3-8y^3=16\left(2\right)\end{cases}}\)
Lấy (1) + (2) theo vế
=> 2x3 = 16
=> x3 = 8 = 23
=> x = 2
Thế x = 2 vào (1)
=> 23 + 8y3 = 0
=> 8 + 8y3 = 0
=> 8y3 = -8
=> y3 = -1 = (-1)3
=> y = -1
Vậy \(\hept{\begin{cases}x=2\\y=-1\end{cases}}\)
Từ \(\left(x+2y\right)\left(x^2-2xy+4y^2\right)=0\)
\(\Leftrightarrow x^3+\left(2y\right)^3=0\)\(\Leftrightarrow x^3+8y^3=0\)(1)
Từ \(\left(x-2y\right)\left(x^2+2xy+4y^2\right)=16\)
\(\Leftrightarrow x^3-\left(2y\right)^3=16\)\(\Leftrightarrow x^3-8y^3=16\)(2)
Cộng (1) với (2) ta được: \(\left(x^3+8y^3\right)+\left(x^3-8y^3\right)=16\)
\(\Leftrightarrow2x^3=16\)\(\Leftrightarrow x^3=8\)\(\Leftrightarrow x=2\)
Thay \(x=2\)vào (1) ta được:
\(2^3+8y^3=0\)\(\Leftrightarrow8y^3+8=0\)
\(\Leftrightarrow8y^3=-8\)\(\Leftrightarrow y^3=-1\)\(\Leftrightarrow y=-1\)
Vậy \(x=2\); \(y=-1\)