Những câu hỏi liên quan
dekhisuki
Xem chi tiết
Phùng Minh Quân
30 tháng 5 2020 lúc 15:50

\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)

\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)

\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)

\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)

Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)

Bình luận (0)
 Khách vãng lai đã xóa
Anh Tuan Le Xuan
Xem chi tiết
Kiệt Nguyễn
Xem chi tiết
zZz Cool Kid_new zZz
6 tháng 8 2020 lúc 9:48

Cay, đánh xong rồi tự nhiên bấm hủy :v

Ta có:\(x+y+z=xyz\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)

Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\rightarrow\left(a;b;c\right)\Rightarrow ab+bc+ca=1\)

Khi đó:

\(A=\frac{a^2\left(1+2b\right)}{b}+\frac{b^2\left(1+2c\right)}{c}+\frac{c^2\left(1+2a\right)}{a}\)

\(=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+2\left(a^2+b^2+c^2\right)\)

\(\ge\frac{\left(a+b+c\right)^2}{a+b+c}+2\cdot\frac{\left(a+b+c\right)^2}{3}\)

\(=a+b+c+\frac{2\left(a+b+c\right)^2}{3}\)

\(\ge\sqrt{3\left(ab+bc+ca\right)}+\frac{6\left(ab+bc+ca\right)}{3}\)

\(=2+\sqrt{3}\)

Đẳng thức xảy ra tại \(x=y=z=\sqrt{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
Trí Tiên亗
6 tháng 8 2020 lúc 9:58

zZz Cool Kid_new zZz. Sai đề rồi bạn êii !

Nếu bạn đặt như vậy thì 

\(A=\frac{y-2}{x^2}+\frac{z-2}{y^2}+\frac{x-2}{z^2}\)

\(=\frac{a^2\left(1-2b\right)}{b}+\frac{b^2\left(1-2c\right)}{c}+\frac{c^2\left(1-2a\right)}{a}\)

\(=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-2.\left(a^2+b^2+c^2\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
zZz Cool Kid_new zZz
6 tháng 8 2020 lúc 10:13

thấy nó sương sương đề thanh hóa năm nay nên t dựa theo đề kia làm luôn :3 

Bình luận (0)
 Khách vãng lai đã xóa
☆Nu◈Pa◈Kachi
Xem chi tiết
shitbo
10 tháng 6 2019 lúc 10:50

\(P\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=1.\)

Dấu "=" xảy ra khi:

\(x=y=z=\frac{2}{3}\)

Bình luận (0)
Thanh Tùng DZ
10 tháng 6 2019 lúc 10:50

Áp dụng BĐT Cô-si cho 2 số dương \(\frac{x^2}{y+z}\)và \(\frac{y+z}{4}\), ta được :

\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{y+z}.\frac{y+z}{4}}=2.\frac{x}{2}=x\)  ( 1 )

Tương tự : \(\frac{y^2}{x+z}+\frac{x+z}{4}\ge y\)                                       ( 2 )

                \(\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\)                                          ( 3 )

Cộng ( 1 ) , ( 2 ) và ( 3 ) , ta được :

\(\left(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\right)+\frac{x+y+z}{2}\ge x+y+z\)

\(P\ge\left(x+y+z\right)-\frac{x+y+z}{2}=1\) 

Dấu " = " xảy ra \(\Leftrightarrow\)x = y = z = \(\frac{2}{3}\)

Vậy GTNN của P là 1 \(\Leftrightarrow\)x = y = z = \(\frac{2}{3}\)

Bình luận (0)

\(\frac{x^2}{y+z}+x+\frac{y^2}{x+z}+y+\frac{z^2}{x+y}+z=\frac{x\left(x+y+z\right)}{y+z}+\frac{y\left(x+y+z\right)}{x+z}+\frac{z\left(x+y+z\right)}{x+y}\)

\(\Rightarrow P+\left(x+y+z\right)=\left(x+y+z\right)\left(\frac{x}{x+y}+\frac{y}{x+z}+\frac{z}{x+y}\right)\)hay \(P+2=2\cdot\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\).Mặt khác \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=\frac{x^2}{xy+xz}+\frac{y^2}{yz+yx}+\frac{z^2}{zx+zy}\ge\frac{\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)}\ge\frac{3\left(xy+yz+zx\right)}{2\left(xy+yz+zx\right)}=\frac{3}{2}\)

Do đó \(P+2\ge2\cdot\frac{3}{2}=3\Rightarrow P\ge1\)

Dấu '=' xảy ra khi \(\hept{\begin{cases}\frac{x}{xy+xz}=\frac{y}{yx+yz}=\frac{z}{zx+zy}\\x=y=z\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{y+z}=\frac{1}{x+z}=\frac{1}{x+y}\\x=y=z\end{cases}\Leftrightarrow}x=y=z=\frac{2}{3}}\)

Bình luận (0)
 Khách vãng lai đã xóa
Thu Phương Nguyễn
Xem chi tiết
ミ★Zero ❄ ( Hoàng Nhật )
25 tháng 4 2021 lúc 9:45

\(\frac{x^2}{y+1}+\frac{y+1}{4}\ge x;\frac{y^2}{z+1}+\frac{z+1}{4}\ge y;\frac{z^2}{x+1}+\frac{x+1}{4}\ge z\)

\(\Rightarrow VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.2=\frac{3}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
Huy Hoang
Xem chi tiết
Quang Trung
23 tháng 4 2021 lúc 15:35

Từ giả thiết ta có :

\(x+y+z=xyz\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)

ta có : \(Q=\frac{y+2}{x^2}+\frac{z+2}{y^2}+\frac{x+2}{z^2}\)

\(=\frac{\left(x+1\right)+\left(y+1\right)}{x^2}+\frac{\left(y+1\right)+\left(z+1\right)}{y^2}+\frac{\left(z+1\right)+\left(x+1\right)}{z^2}-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(=\left(x+1\right)\left(\frac{1}{z^2}+\frac{1}{x^2}\right)+\left(y+1\right)\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\left(z+1\right)\left(\frac{1}{y^2}+\frac{1}{z^2}\right)-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\ge\frac{2\left(x+1\right)}{zx}+\frac{2\left(y+1\right)}{xy}+\frac{2\left(z+1\right)}{yz}-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(=2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+2\)

Áp dụng bđt \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

Dấu " = " xảy ra khi và chỉ khi a = b = c

Ta có \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\ge3\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=3\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\sqrt{3}\)

Do đó : \(Q\ge\sqrt{3}+2\). Dấu " = " xảy ra 

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\\z+y+z=xyz\end{cases}\Leftrightarrow x=y=z=\sqrt{3}}\)

Vậy Min \(Q=\sqrt{3}+2\)khi \(x=y=z=\sqrt{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
Harry James Potter
Xem chi tiết
ABC
Xem chi tiết
Nguyễn Thị Mát
Xem chi tiết
zZz Cool Kid_new zZz
5 tháng 11 2019 lúc 19:46

\(\frac{x+1}{1+y^2}=\frac{\left(x+1\right)\left(y^2+1\right)-y^2\left(x+1\right)}{1+y^2}=x+1-\frac{y^2\left(x+1\right)}{1+y^2}\ge x+1-\frac{xy+y}{2}\)

Tương tự ta có:

\(\frac{y+1}{z^2+1}\ge y+1-\frac{yz+z}{2}\)

\(\frac{z+1}{1+x^2}\ge z+1-\frac{zx+x}{2}\)

Cộng vế theo vế ta có:

\(Q\ge3+\left(x+y+z\right)-\frac{x+y+z+xy+yz+zx}{2}\)

\(=3+\frac{x+y+z-xy-yz-zx}{2}\)

Có BĐT phụ sau:

\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\) ( tự cm )

\(\Rightarrow xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}=3\)

Khi đó \(P\ge3\)

Dấu "=" xảy ra tại \(x=y=z=1\)

Bình luận (0)
 Khách vãng lai đã xóa