cho tam giác ABC gọi M,N là trung điểm của AB,AC
a) tứ giác ABCD là hình gì
b) gọi Q là trung điểm của N,C. Đường thẳng Q song song với BC cắt BN tại E . Đường thẳng đi qua C song song với BN cắt đường thẳng QE tại K . CMR: EK=BC
Cho tam giác ABC, gọi M và N lần lượt là trung điểm của AB; AC.
a) Tứ giác BMNC là hình gì ?
b) Gọi Q là trung điểm của NC. Đường thẳng qua Q song song với BC cắt BN tại E. Đường thẳng qua C song song với Bn cắt đường thẳng QE tại K. Cmr: EK = BC
c) Đường thẳng QE cắt CM tại F. Cmr: EF = \(\frac{1}{4}\)BC
Cho tam giác ABC , gọi M,N lần lượt là trung điểm của AB,AC
a) tứ giác BCNM là hình gì ? vì sao
b) Gọi Q là trung điểm của NC. Đường thẳng qua Q song song với BC cắt BN tại E. Đường thẳng qua C song song với BN cắt QE tại K . Chứng minh rằng EK=BC
c)Đường thẳng QE cắt CM tại F . Chứng minh EF = 1/4 BC
d) Đường thẳng qua E vuông góc với AB cắt đường thẳng F vuông góc với AC tại I. Chứng minh tam giác BIC cân.
Cần nhất câu cuối ._.
a) ∆ABC có M, N lần lượt là trung điểm của AB, AC nên MN là đường trung bình của tam giác => MN // BC
Tứ giác MNCB có MN // BC nên là hình thang
b) Xét ∆EQN và ∆KQC có:
^ENQ = ^KCQ (BN//CK, so le trong)
QN = QC (gt)
^EQN = ^KQC (đối đỉnh)
Do đó ∆EQN = ∆KQC (g.c.g)
=> EN = KC ( hai cạnh tương ứng) (1)
∆NBC có Q là trung điểm của NC và QE // BC nên E là trung điểm của BN => EN = BE (2)
Từ (1) và (2) suy ra KC = BE
Tứ giác EKCB có KC = BE và KC // BE nên là hình bình hành => EK = BC (đpcm)
c) EF = EQ - FQ = 1/2BC - 1/2MN = 1/2BC - 1/4BC = 1/4BC (đpcm)
d) Gọi J là trung điểm của BC
Ta có EJ là đường trung bình của ∆NBC nên EJ // NC mà FI⊥NC nên FI⊥EJ
Tương tự suy ra EI⊥FJ suy ra I là trực tâm của ∆EFJ => JI⊥EF
Mà dễ thấy EF // BC nên IJ⊥BC
∆BIC có IJ vừa là đường cao vừa là trung tuyến nên là tam giác cân (đpcm)
a) Do M, N lần lượt là trung điểm của AB, AC nên MN là đường trung bình của tam giác ABC.
=> MN //BC
Tứ giác MNCB có MNBC nên MNCB là hình thang.
b) Xét tứ giác EKCB có EK//BC, BE//CK
=> EKCB là hình bình hành
=> EK = BC (đpcm)
Cho tam giác ABC Gọi M là trung điểm của AB Qua M kẻ đường thẳng song song với BC và cắt AC tại N qua n kẻ đường thẳng song song AB cắt BC tại B .
a tứ giác mnpb là hình bình hành
b tam giác amn =tam giác npc
c gọi i,k giao điểm bn với mp,ap . cmr kn=2ik
a, Xét tứ giác MNPB có:
MN//PB (Vì MN//BC và P ϵ BC)
MB//NP (Vì AB//NP và M ϵ AB)
=> Tứ giác MNPB là hbh
b, Ta có:
M là trung điểm AB
MN//BC
=> MN là đường trung bình của tam giác ABC
=> N là trung điểm AC, MN=BC/2 và MN//BC
Xét 2 tam giác AMN và NPC có
AM=NP (Vì AM=BM, BM=NP)
AN=NC
MN=PC ( Vì MN=BC/2, MN=BP)
=> Tam giác AMN = Tam giác NPC (c.c.c)
Giúp mình với! mình cần nhất câu D
B1:Cho tam giác ABC , gọi M,N lần lượt là trung điểm của AB,AC
a) tứ giác BCNM là hình gì ? vì sao
b) Gọi Q là trung điểm của NC. Đường thẳng qua Q song song với BC cắt BN tại E. Đường thẳng qua C song song với BN cắt QE tại K . Chứng minh rằng EK=BC
c)Đường thẳng QE cắt CM tại F . Chứng minh EF = 1/4 BC
d) Đường thẳng qua E vuông góc với AB cắt đường thẳng F vuông góc với AC tại I. Chứng minh tam giác BIC cân.
https://hoidap247.com/cau-hoi/27753
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Qua M kẻ đường thẳng song song với AB cắt AC tại N và kẻ đường thẳng song song với AC cắt AB tại K
a. Chứng minh rằng tứ giác AKMN là hình chữ nhật.
b. Điểm E đối xứng với M qua K, Q đối xứng với M qua N. Chứng minh rằng E,A,Q thẳng
a: Xét tứ giác AKMN có
MN//AK
AN//MK
Do đó: AKMN là hình bình hành
mà \(\widehat{NAK}=90^0\)
nên AKMN là hình chữ nhật
b: Xét ΔAMQ có
AN là đường cao
AN là đường trung tuyến
Do đó: ΔAMQ cân tại A
mà AN là đường cao
nên AN là tia phân giác của góc MAQ(1)
Xét ΔAME có
AK là đường cao
AK là đường trung tuyến
DO đó: ΔAME cân tại A
mà AK là đường cao
nên AK là tia phân giác của góc MAE(2)
Từ (1) và (2) suy ra \(\widehat{QAE}=2\cdot\left(\widehat{MAN}+\widehat{MAK}\right)=2\cdot90^0=180^0\)
hay Q,E,A thẳng hàng
Cho tam giác abc vuông tại a gọi m là trung điểm của BC Ê Qua M kẻ đường thẳng song song với AB cắt AC tại N và kẻ đường thẳng song song với AC cắt AB tại K A: Chứng minh rằng tứ giác AKMN là hình chữ nhật B: điểm E đối xứng ảnh với M qua K, Q đối xứng với M qua N chứng minh rằng E, A, Q thẳng hàng
Cho tam giác ABC vuông tại A, gọi M là trung điểm BC, N là trung điểm AC. Qua M kẻ đường thẳng song song với AC và cắt AB tại F. Từ C kẻ đường thẳng song song với AB và cắt MF tại E.
a. Tứ giác AFEC, AMEN là hình gì ? Vì sao ?
b. CMR: E đối xứng với F qua M
c. Gọi H là điểm đối xứng của M qua F. CMR: HF= 1/3 HE
d. Tam giác ABC có thêm điều kiện gì thì tứ giác AMBH là hình vuông ?
Mọi người giúp em với ạ.
Cho tam giác ABC (AB<AC). Gọi M là trung điểm của đoạn thẳng BC. Qua điểm M kẻ đường thẳng song song với AC, cắt AB tại P. Qua điểm M kẻ đường thằng song song với AB, cắt AC tại Q.
a, Tứ giác APMQ là hình gì? Vì sao?
b, Biết PM = 4cm. Tính AC
c, Tam giác ABC cần thêm điều kiện gì để TG APMQ là hình chữ nhật?
1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC
a, Tứ giác BMNC là hình gì ?
b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ?
c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi .
d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông
2, Cho tam giác ABC cân tai A lấy điểm M trên cạnh AB . Từ M kẻ đường thẳng song song với AC cắt BC tại E
a, Chứng minh tam giác BME cân
b, Trên tia đối của tia CA lấy điểm N sao cho CN = BM . Tứ giác MCNE là hình gì ?
c, Gọi I là trung điểm của CE . Chứng minh M,N,I thẳng hàng
d, Từ M kẻ đường thẳng song song với BC cắt AC tại F . Từ N kẻ đường thẳng song song với BC cắt Me tại K . Chứng minh F,I,K thẳng hàng
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành