cho hinh thang can ABCD AB//CD,AB lt;CD . Tren tia doi cua tia BA lay E sao cho CB CE.C/m AECD la hbh.
cho hinh thang can ABCD(AB//CD,AB<CD)ke cac duong cao AE, BF cua hinh thang chung minh rang DE=CF
Xét AED và BFC có :
AD = BC ( gt )
Góc A = góc C
Góc DAE = góc CFB ( vì góc A = góc B mà AE và BF là hai đường cao của hình thang cân ABCD)
Do đó tam giác AED = tam giác BFC suy ra DE = CF ( hai cạnh tương ứng )
Cho hinh thang can ABCD (AB//CD), E la giao diem cua 2 duong cheo. Chung minh rang EA=EB, EC=ED
cho hinh thang ABCD, AB//CD, AB<CD. CMR DC-AB< AD+ BC (thong cam cho minh nha may minh bi loi dau) minh dang can gap mong cac ban giup do
cho hinh thang ABCD AB//CD, AB<CD. CMR DC-AB<AD+ BC. ( thong cam cho minh nha minhf bi loi dau ) minhf dang can gap lam mong cac ban giup do
cho hinh thang can ABCD(AB//CD,AB<CD). Tren tia doi cua tia BA lay E sao cho CB=CE.C/m AECD la hbh.
cho hinh thang can ABCD AB//CD,AB<CD . Tren tia doi cua tia BA lay E sao cho CB CE.C/m AECD la hbh.
cho hinh thang can abcd co (ab//cd) co bdc=45 . goi o la giao diem cua ab va cd a) cm tam giac doc vuong can b) tinh dien tich cua hinh thang abcd, biet bd=6 cm
a: Sửa đề: O là giao của AC và BD
Xét ΔADC và ΔBCD có
AD=BC
DC chung
AC=BD
=>ΔADC=ΔBCD
=>góc ODC=góc OCD=45 độ
=>ΔDOC vuông cân tại O
b: góc OAB=góc ODC=45 độ
=>ΔOAB vuông cân tại O
=>2*OB^2=AB^2
=>AB=OB*căn 2
ΔODC vuông cân tại O
=>DC=OD*căn 2
=>AB+DC=6*căn 2(cm)
Kẻ BH vuông góc DC
Xét ΔBHD vuông tại H có góc BDH=45 độ
nên BH=BD*sin45=3*căn 2(cm)
=>S ABCD=1/2*3*căn 2*6căn 2=18cm2
cho hinh thang can abcd (ab song song cd và ab<cd)canh ben dai 1 cm goc tao boi day lon va canh ben co so do bang 60 do cd=2,7 cm tinh do dai ab
cho hinh thang can ABCD (AB//CD) có góc A =B=60 độ, AB=4,5 cm, AD=BC=2cm.tính độ dài đáy CD và diên tích hinh thang cân ABCD
Bài làm:
Từ D,E kẻ DE,CF vuông góc với AB \(\left(E,F\in AB\right)\)
Xét trong Δ vuông ADE tại D có góc A bằng 60 độ
=> \(\widehat{ADE}=30^0\)
Vì tam giác ADE có: \(\hept{\begin{cases}\widehat{A}=60^0\\\widehat{ADE}=30^0\\\widehat{AED}=90^0\end{cases}}\) => \(AE=\frac{AD}{2}=\frac{2}{2}=1\left(cm\right)\)
Tương tự tính được: \(BF=1\left(cm\right)\)
=> \(FE=AB-AE-BF=4,5-2=2,5\left(cm\right)\)
Vì DC // FE và DE // FC nên theo t/c đoạn chắn
=> DC = FE = 2,5 (cm)
Áp dụng định lý Pytago ta được: \(DE^2=AD^2-AE^2=2^2-1^2=3\left(cm\right)\)
=> \(DE=\sqrt{3}\left(cm\right)\)
Diện tích hình thang cân ABCD là: \(\frac{\left(AB+CD\right).DE}{2}=\frac{7\sqrt{3}}{2}\left(cm^2\right)\)
Giải
Kẻ DH vuông góc với AB
\(\sin\widehat{A}=\frac{DH}{AD}\)
\(\Leftrightarrow\sin60^o=\frac{DH}{2}\Rightarrow DH=\sqrt{3}\)
\(\cos A=\frac{AH}{AD}\)
\(AH=\cos60^o.2\)
\(\Rightarrow DC=AB-1-1=4,5-2=2,5\)
\(S\)ABCD=\(\frac{1}{2}.\sqrt{3}.\left(4,5+2,5\right)\)
\(=\frac{7\sqrt{3}}{2}\)
cho hinh thang ABCD co day AB//CD va AB<CD. E la trung diem cua BC. biet dien tich tam giac ADE=10cm2 tinh dien tich hinh thang ABCD