Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kiều Hoàng Vũ
Xem chi tiết
minhduc
15 tháng 10 2017 lúc 12:34

\(A=7^2+7^3+...+7^8.\)

\(\Rightarrow A=\left(7^2+7^3\right)+....+\left(7^7+7^8\right)\)

\(\Rightarrow A=7^2.8+....+7^7.8\)

\(\Rightarrow A=8.\left(7^2+....+7^7\right)\)

Do đó A là số chẵn ( vì mọi số nhân với 8 đều là số chẵn )

minhduong2007
5 tháng 11 2017 lúc 17:23

6725572

minhduong2007
5 tháng 11 2017 lúc 17:24

a là số chẵn

a ko chia hết cho 5 vì a kết thúc là 2

a là 6725572

zZz Hoàng Vân zZz
Xem chi tiết
lê mai phương
Xem chi tiết
Nguyễn Thị Ánh
Xem chi tiết
Phong Trần Nam
13 tháng 9 2016 lúc 19:08

Có 7 chia hết cho 7

Có 7^2 chia hết cho 7

.....

Có 7^12 chia hết cho 7

=>7+7^2+7^3+.....+7^12 chia hết cho 7

=> A chia hết cho 7

SKT_ Lạnh _ Lùng
13 tháng 9 2016 lúc 19:12

cho A=7+7 mũ 2+7 mũ 3+...+7 mũ 10+7 mũ 11 +7 mũ 12
chứng tỏ A chia hết cho 7

7+7^2+7^3+.....+7^12 chia hết cho 7

=> A chia hết cho 7

Toán Online
Xem chi tiết
ha Le ha
23 tháng 7 2015 lúc 10:57

làm 1 bài thôi có được không.

Ngôi Sao Xinh
12 tháng 10 2015 lúc 11:27

#ha le ha ban trả lời câu 2,3,4 giúp minh với

tong thi hong tham
Xem chi tiết
Trần Anh Tuấn
17 tháng 11 2021 lúc 20:46

con khong biet

Khách vãng lai đã xóa
Munh
26 tháng 12 2022 lúc 21:46

Sai hết :)

TRẦN VĂN THIỆN
12 tháng 11 lúc 17:33

Có: \(\frac{1}{2^{2}} < \frac{1}{1.2} ; \frac{1}{3^{2}} < \frac{1}{2.3} ; . . . ; \frac{1}{8^{2}} < \frac{1}{7.8}\)

\(\Rightarrow B < \frac{1}{1.2} + \frac{1}{2.3} + . . . + \frac{1}{7.8}\)

\(\Rightarrow B < 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + . . . + \frac{1}{7} - \frac{1}{8}\)

\(\Rightarrow B < 1 - \frac{1}{8} < 1\)

\(\Rightarrow B < 1\) \(\Rightarrow đ p c m\)


Phạm Hoàng Khánh Ngọc
Xem chi tiết
Phạm Quỳnh Hương
Xem chi tiết
Đỗ Nụ
29 tháng 10 2021 lúc 17:35

Tôi  tên  là  Ngọc  Anh  . Năm  nay  Tôi 11 tuổi.  Tôi  không  biết  bài  này  

Khách vãng lai đã xóa
Nguyễn Minh Đức
28 tháng 10 2022 lúc 19:27

câu a của bạn thiếu 2 mũ 2

 

Uông Nhật Huy
31 tháng 10 2023 lúc 19:19

67aiijajjhq

Trần Nguyễn Trang My
Xem chi tiết
Phong
10 tháng 11 2023 lúc 18:55

a) \(A=2+2^2+...+2^{2024}\)

\(2A=2^2+2^3+...+2^{2025}\)

\(2A-A=2^2+2^3+...+2^{2025}-2-2^2-...-2^{2024}\)

\(A=2^{2025}-2\) 

b) \(2A+4=2n\)

\(\Rightarrow2\cdot\left(2^{2025}-2\right)+4=2n\)

\(\Rightarrow2^{2026}-4+4=2n\)

\(\Rightarrow2n=2^{2026}\)

\(\Rightarrow n=2^{2026}:2\)

\(\Rightarrow n=2^{2025}\) 

c) \(A=2+2^2+2^3+...+2^{2024}\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2023}+2^{2024}\right)\)

\(A=2\cdot3+2^3\cdot3+...+2^{2023}\cdot3\)

\(A=3\cdot\left(2+2^3+...+2^{2023}\right)\)

d) \(A=2+2^2+2^3+...+2^{2024}\)

\(A=2+\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2022}+2^{2023}+2^{2024}\right)\)

\(A=2+2^2\cdot7+2^5\cdot7+...+2^{2022}\cdot7\)

\(A=2+7\cdot\left(2^2+2^5+...+2^{2022}\right)\)

Mà: \(7\cdot\left(2^2+2^5+...+2^{2022}\right)\) ⋮ 7

⇒ A : 7 dư 2 

Cao Gia Hưng
12 tháng 1 2024 lúc 20:12

9