\(\sqrt{\frac{5+\sqrt{21}}{5-\sqrt{21}}}+\sqrt{\frac{5-\sqrt{21}}{5+\sqrt{21}}}\)
\(\sqrt{\frac{5+\sqrt{21}}{5-\sqrt{21}}}+\sqrt{\frac{5-\sqrt{21}}{5+\sqrt{21}}}\)
\(\sqrt{\frac{5+\sqrt{21}}{5-\sqrt{21}}}+\sqrt{\frac{5-\sqrt{21}}{5+\sqrt{21}}}\)
\(=\)\(\sqrt{\frac{\left(5+\sqrt{21}\right)\left(5-\sqrt{21}\right)}{\left(5-\sqrt{21}\right)\left(5-\sqrt{21}\right)}}+\sqrt{\frac{\left(5+\sqrt{21}\right)\left(5-\sqrt{21}\right)}{\left(5+\sqrt{21}\right)\left(5+\sqrt{21}\right)}}\)
\(=\)\(\sqrt{\frac{25-21}{\left(5-\sqrt{21}\right)^2}}+\sqrt{\frac{25-21}{\left(5+\sqrt{21}\right)^2}}\)
\(=\)\(\sqrt{\left(\frac{2}{5-\sqrt{21}}\right)^2}+\sqrt{\left(\frac{2}{5+\sqrt{21}}\right)^2}\)
\(=\)\(\left|\frac{2}{5-\sqrt{21}}\right|+\left|\frac{2}{5+\sqrt{21}}\right|\)
\(=\)\(\frac{2}{5-\sqrt{21}}+\frac{2}{5+\sqrt{21}}\) ( vì \(\frac{2}{5-\sqrt{21}}=\frac{2}{\sqrt{25}-\sqrt{21}}>0\) )
\(=\)\(\frac{2\left(5+\sqrt{21}\right)+2\left(5-\sqrt{21}\right)}{\left(5-\sqrt{21}\right)\left(5+\sqrt{21}\right)}\)
\(=\)\(\frac{10+2\sqrt{21}+10-2\sqrt{21}}{25-21}\)
\(=\)\(\frac{20}{4}\)
\(=\)\(5\)
Chúc bạn học tốt ~
Rút Gọn :
\(A=\sqrt{\frac{5+\sqrt{21}}{5-\sqrt{21}}}+\sqrt{\frac{5-\sqrt{21}}{5+\sqrt{21}}}\)
\(B=\sqrt{7+\sqrt{33}}+\sqrt{7-\sqrt{33}}\)
\(A=\sqrt{\frac{5+\sqrt{21}}{5-\sqrt{21}}}+\sqrt{\frac{5-\sqrt{21}}{5+\sqrt{21}}}\)
\(=\sqrt{\frac{\left(5+\sqrt{21}\right)^2}{\left(5-\sqrt{21}\right)\left(5+\sqrt{21}\right)}}+\sqrt{\frac{\left(5-\sqrt{21}\right)^2}{\left(5-\sqrt{21}\right)\left(5+\sqrt{21}\right)}}\)
\(=\sqrt{\frac{\left(5+\sqrt{21}\right)^2}{4}}+\sqrt{\frac{\left(5-\sqrt{21}\right)^2}{4}}\)
\(=\frac{5+\sqrt{21}}{2}+\frac{5-\sqrt{21}}{2}=5\)
\(B=\sqrt{7+\sqrt{33}}+\sqrt{7-\sqrt{33}}\)
\(\Rightarrow\)\(\sqrt{2}B=\sqrt{14+2\sqrt{33}}+\sqrt{14-2\sqrt{33}}\)
\(=\sqrt{\left(\sqrt{11}+\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{11}-\sqrt{3}\right)^2}\)
\(=\sqrt{11}+\sqrt{3}+\sqrt{11}-\sqrt{3}=2\sqrt{11}\)
\(\Rightarrow\)\(B=\sqrt{22}\)
Rút gọn M=\(\frac{\sqrt{21+3\sqrt{5}}+\sqrt{21-3\sqrt{5}}}{\sqrt{21}+6\sqrt{11}}+\sqrt{11-6\sqrt{2}}\)
tính \(\frac{\sqrt{2}\left(\sqrt{\sqrt{21}+5}+\sqrt{5-\sqrt{21}}\right)}{\sqrt{2}}\)
1 nhóm người chơi đấu cờ với nhau , người nào cx đáu với người khác trong nhóm . hỏi có bao nhiêu người. biết rằng có tất cả 15 ván cờ
\(\frac{\sqrt{2}\left(\sqrt{\sqrt{21}+5}+\sqrt{5-\sqrt{21}}\right)}{\sqrt{2}}\)
\(=\frac{\sqrt{3+7+2\sqrt{3.7}}+\sqrt{3+7-2\sqrt{21}}}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(\sqrt{3}+\sqrt{7}\right)^2}+\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}}{\sqrt{2}}\)
\(=\frac{\sqrt{3}+\sqrt{7}+\sqrt{7}-\sqrt{3}}{\sqrt{2}}\)
\(=\sqrt{14}\)
Bài 1. thực hiện phép tính
a) \(\sqrt{\frac{5+\sqrt{21}}{5-\sqrt{21}}}+\sqrt{\frac{5-\sqrt{21}}{5+\sqrt{21}}}\) b) \(\sqrt{\frac{4+\sqrt{7}}{4-\sqrt{7}}}+\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}}}\)
Bài 2. Tính:a) \(M=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+\sqrt{11-6\sqrt{2}}}}\)
b) \(\frac{1}{\sqrt{25}+\sqrt{24}}+\frac{1}{\sqrt{24}+\sqrt{23}}+...+\frac{1}{\sqrt{2}+\sqrt{1}}=4\)
c)
\(\frac{\left(5\sqrt{3}+\sqrt{50}\right)\left(5-\sqrt{24}\right)}{\sqrt{75}0-5\sqrt{2}}\)
\(\frac{1}{\sqrt{25}+\sqrt{24}}+\frac{1}{\sqrt{24}+\sqrt{23}}+...+\frac{1}{\sqrt{2}+\sqrt{1}}=4\)
\(\Leftrightarrow\sqrt{25}-\sqrt{24}+\sqrt{24}-\sqrt{23}+...+\sqrt{2}-\sqrt{1}=4\)
\(\Leftrightarrow\sqrt{25}-\sqrt{1}=4\Leftrightarrow5-1=4\)(đúng)
Vậy \(\frac{1}{\sqrt{25}+\sqrt{24}}+\frac{1}{\sqrt{24}+\sqrt{23}}+...+\frac{1}{\sqrt{2}+\sqrt{1}}=4\)(đpcm)
\(M=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+\sqrt{11-6\sqrt{2}}}}\)
\(=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+\sqrt{2-6\sqrt{2}+9}}}\)
\(=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+\sqrt{\left(3-\sqrt{2}\right)^2}}}\)
\(=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+3-\sqrt{2}}}\)
\(=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{6}}\)
\(=\sqrt{16+32\sqrt{6}}\)
Rút gọn:
\(A=\sqrt{5-2\sqrt{3-\sqrt{3}}}-\sqrt{3+\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
\(B=\frac{\sqrt{21+3\sqrt{5}}+\sqrt{21-3\sqrt{5}}}{\sqrt{21}+6\sqrt{11}}+\sqrt{11-6\sqrt{2}}\)
Tính:
A =\(\sqrt{5-2\sqrt{3-\sqrt{3}}}-\sqrt{3+\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
B= \(\frac{\sqrt{21+3\sqrt{5}}+\sqrt{21-3\sqrt{5}}}{\sqrt{21}+6\sqrt{11}}+\sqrt{11-6\sqrt{2}}\)
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
bn làm bài như thế nào z
hok tốt
Bài 1. Tính:
a) \(\sqrt{\frac{5+\sqrt{21}}{5-\sqrt{21}}}+\sqrt{\frac{5-\sqrt{21}}{5+\sqrt{21}}}\) b) \(\left(2-\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+\sqrt{11-6\sqrt{2}}}}\)
c) \(\frac{\left(5\sqrt{3}+\sqrt{50}\right)\left(5-\sqrt{24}\right)}{\sqrt{75}-5\sqrt{2}}\) d) \(\frac{1}{\sqrt{25}+\sqrt{24}}+\frac{1}{\sqrt{24}+\sqrt{23}}+...+\frac{1}{\sqrt{2}+\sqrt{1}}\)
Bài 2. Tìm x
a) \(\sqrt{x-2\sqrt{x-1}}=2\) b) \(\sqrt{x^2-x}+\sqrt{x^2+x-2}=0\)
giúp tớ với, chiều nay tớ p ik hok rồi, thầy ktra bài tập nx
Bài 1:
a/ \(=\sqrt{\frac{\left(5+\sqrt{21}\right)^2}{\left(5-\sqrt{21}\right)\left(5+\sqrt{21}\right)}}+\sqrt{\frac{\left(5-\sqrt{21}\right)^2}{\left(5-\sqrt{21}\right)\left(5+\sqrt{21}\right)}}\)
\(=\sqrt{\frac{\left(5+\sqrt{21}\right)^2}{4}}+\sqrt{\frac{\left(5-\sqrt{21}\right)^2}{4}}=\frac{5+\sqrt{21}}{2}+\frac{5-\sqrt{21}}{2}\)
\(=\frac{10}{2}=5\)
b/ \(=\left(2-\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+\sqrt{\left(3-\sqrt{2}\right)^2}}}\)
\(=\left(2-\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+3-\sqrt{2}}}\)
\(=\left(2-\sqrt{3}\right)\sqrt{2+4\sqrt{6}}\)
Bạn coi lại đề, tới đây ko rút gọn được nữa nên chắc bạn ghi đề nhầm ở chỗ nào đó
c/ \(=\frac{5\left(\sqrt{3}+\sqrt{2}\right)\left(5-\sqrt{24}\right)}{5\left(\sqrt{3}-\sqrt{2}\right)}=\frac{\left(\sqrt{3}+\sqrt{2}\right)^2\left(5-\sqrt{24}\right)}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}\)
\(=\left(5+2\sqrt{6}\right)\left(5-\sqrt{24}\right)=\left(5+\sqrt{24}\right)\left(5-\sqrt{24}\right)=1\)
d/ Nhân cả tử và mẫu của từng phân số với liên hợp của mẫu, mẫu số sẽ thành 1 hết:
\(=\frac{\sqrt{25}-\sqrt{24}}{\left(\sqrt{25}+\sqrt{24}\right)\left(\sqrt{25}-\sqrt{24}\right)}+\frac{\sqrt{24}-\sqrt{23}}{\left(\sqrt{24}+\sqrt{23}\right)\left(\sqrt{24}-\sqrt{23}\right)}+...+\frac{\sqrt{2}-1}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}\)
\(=\sqrt{25}-\sqrt{24}+\sqrt{24}-\sqrt{23}+...+\sqrt{2}-1\)
\(=\sqrt{25}-1=5-1=4\)
Câu 2:
a/ ĐKXĐ: \(x\ge1\)
\(\Leftrightarrow\sqrt{x-1-2\sqrt{x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)
\(\Leftrightarrow\left|\sqrt{x-1}-1\right|=2\)
TH1: \(\sqrt{x-1}-1\ge0\Rightarrow x\ge2\) pt trở thành:
\(\sqrt{x-1}-1=2\Leftrightarrow\sqrt{x-1}=3\)
\(\Rightarrow x-1=9\Rightarrow x=10\) (nhận)
TH2: \(\sqrt{x-1}-1< 0\Rightarrow1\le x< 2\) pt trở thành:
\(1-\sqrt{x-1}=2\Rightarrow\sqrt{x-1}=-1< 0\) (vô nghiệm)
b/
\(\sqrt{x^2-x}+\sqrt{x^2+x-2}=0\)
Do \(\left\{{}\begin{matrix}\sqrt{x^2-x}\ge0\\\sqrt{x^2+x-2}\ge0\end{matrix}\right.\) nên đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\sqrt{x^2-x}=0\\\sqrt{x^2+x-2}=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2-x=0\\x^2+x-2=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\\\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow x=1\)
Tính: \(21\sqrt{\frac{3}{7}}-\frac{13}{2\sqrt{3}-5}-\sqrt{21-12\sqrt{3}}\)