Số nguyên a nhỏ nhất sao cho \(x=\frac{a+3}{5}\) là một số hữu tỉ dương là ........
Số nguyên a nhỏ nhất sao cho \(X=\frac{a+3}{5}\) là một số hữu tỉ dương là:......
\(x=\frac{a+3}{5}\) là số hữu tỉ
=>a+3 chia hết cho 5
=>a+3 E B(5)={0;5;10;15;...}
mà a nhỏ nhất,X là số hữu tỉ dương
=>a+3=5
=>a=2
vậy a=2
Số nguyên a nhỏ nhất sao cho
x = a +3 / 5 là số hữu tỉ dương là
1/ hai số hữu tỉ x,y thỏa mãn !x+3/5!+!-2/3-y!=0
2/Kí hiệu [x] là số nguyên lớn nhất không vượt quá x. Khi đó [-2,3]=
3/Số nguyên a nhỏ nhất sao cho x=a+3/5 là số hữu tỉ dương
Bài 1: Tìm x thuộc Z để A= \(\frac{x-5}{9-x}\)
a) Là số hữu tỉ dương
b) Không là số hữu tỉ dương mà cũng không là số hữu tỉ âm
c) A có giá trị là số nguyên
d) A có giá trị lớn nhất, nhỏ nhất
cho A=\(\frac{5+a}{\frac{20}{7}-a}\left(a\in Z\right)\)
a) tìm a để A là số hữu tỉ
b) tìm a để A là số hữu tỉ dương ,âm
c0 tìm a để A là số nguyên dương nhỏ nhất
Cho x = \(\dfrac{-5}{a-3}\) (a ϵ Z). Xác định để:
a) x là một số hữu tỉ b) x là một số hữu tỉ dương
c) x là một số hữu tỉ âm d) x là một số nguyên dương
a) \(\dfrac{-5}{a-3}\left(a\inℤ\right)\) là số hữu tỷ \(\Leftrightarrow a-3\ne0\Leftrightarrow a\ne3\)
b) \(\dfrac{-5}{a-3}\left(a\inℤ\right)\) là số hữu tỷ dương \(\Leftrightarrow a-3< 0\Leftrightarrow a< 3\)
c) \(\dfrac{-5}{a-3}\left(a\inℤ\right)\) là số hữu âm \(\Leftrightarrow a-3>0\Leftrightarrow a>3\)
d) \(\dfrac{-5}{a-3}\left(a\inℤ\right)\) là số nguyên đương
\(\Leftrightarrow a-3\in B\left(5\right)=\left\{-1;-5\right\}\)
\(\Leftrightarrow a\in\left\{2;-2\right\}\)Số nguyên a nhỏ nhất để số hữu tỉ x= \(\frac{a-3}{2}\)nhận giá trị dương là a=....
Bài giải
\(\frac{a-3}{2}\) đạt giá trị dương khi \(\left(a-3\right)\text{ }⋮\text{ }2\)
Mà số nguyên a nhỏ nhất => \(\frac{a-3}{2}\) đạt giá trị nguyên dương nhỏ nhất
\(\Rightarrow\text{ }\frac{a-3}{2}=1\)
\(\Rightarrow\text{ }a-3=2\)
\(a=2+3\)
\(x=5\)
Bài giải
\(\frac{a-3}{2}\) đạt giá trị dương khi \(\left(a-3\right)\text{ }⋮\text{ }2\)
Mà số nguyên a nhỏ nhất => \(\frac{a-3}{2}\) đạt giá trị nguyên dương nhỏ nhất
\(\Rightarrow\text{ }\frac{a-3}{2}=1\)
\(\Rightarrow\text{ }a-3=2\)
\(a=2+3\)
\(x=5\)
Trả lời
\(\frac{a-3}{2}\)đạt giá trị dương khi (a-3) chia hết cho 2.
Mà số nguyên a nhỏ nhất => \(\frac{a-3}{2}\)đạt giá trị nguyên dương nhỏ nhất.
=>\(\frac{a-3}{2}=1\)
=>\(a-3=2\)
\(a=3+2\)
\(a=5\)
Vậy số hữu tỉ x=5
Tìm các số nguyên n lớn nhất - nhỏ nhất sao cho x = \(\frac{n-2016}{2015+n}\)là số hữu tỉ dương.
Bài 1 : Chứng minh :
Nếu x là một số hữu tỉ thì tồn tại 1 số nguyên dương a sao cho a.x là 1 số nguyên dương . Nếu x là một số sao cho tồn tại 1 số nguyên dương a sao cho a.x là 1 số nguyên thì x là 1 số hữu tỉ