Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đinh Đức Hùng
Xem chi tiết
Cô Hoàng Huyền
2 tháng 1 2018 lúc 14:31

Ta có : \(c\left(ac+1\right)^2=\left(2c+b\right)\left(3c+b\right)\Leftrightarrow c\left(a^2c^2+2ac+1\right)=6c^2+5bc+b^2\)

\(\Leftrightarrow c\left(a^2c^2+2ac+1-6c-5b\right)=b^2\)

Gọi \(\left(c;a^2c^2+2ac+1-6c-5b\right)=d\)

Khi đó ta có \(\hept{\begin{cases}c⋮d\\a^2c^2+2ac-6c+1-5b⋮d\end{cases}\Rightarrow1-5b⋮d}\)

Đặt \(\hept{\begin{cases}c=xd\\a^2c^2+2ac-6c+1-5b=yd\end{cases}}\left[x,y\in Z;\left(x;y\right)=1\right]\)

\(\Rightarrow c\left(a^2c^2+2a-6c+1-5b\right)=xyd^2\Rightarrow b^2=xyd^2\)

\(\Rightarrow b⋮d\Rightarrow1⋮d\Rightarrow d=1\)

Vậy c là số chính phương.

Trần Huy Hoàng
Xem chi tiết
Dương Thiên Tuệ
Xem chi tiết
AXKAI VFS VFS
5 tháng 4 lúc 22:49

Gỉa sử ab+1=n2 (n thuộc N)
Cho c=a+b+2n.Ta có:
* ac+1=a(a+b+2n)+1
          =a2+2na+ab+1=a2+2na+n2=(a+n)2
* bc +1=b(a+b+2n)+1=b2+2nb+ab+1
           =b2+2nb+n2=(b+n)2
Vậy ac+1 và bc+1 đều là số chính phương.

 

Nguyễn Thanh Hà
Xem chi tiết
Doan Tuan kiet
Xem chi tiết
Nguyễn Tấn Hưng
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
Lê Song Phương
2 tháng 8 2023 lúc 10:29

Điều kiện đã cho có thể được viết lại thành \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+d}+\dfrac{d}{d+a}=2\)

hay \(1-\dfrac{a}{a+b}-\dfrac{b}{b+c}+1-\dfrac{c}{c+d}-\dfrac{d}{d+a}=0\)

\(\Leftrightarrow\dfrac{b}{a+b}-\dfrac{b}{b+c}+\dfrac{d}{c+d}-\dfrac{d}{d+a}=0\)

\(\Leftrightarrow\dfrac{b^2+bc-ab-b^2}{\left(a+b\right)\left(b+c\right)}+\dfrac{d^2+da-cd-d^2}{\left(c+d\right)\left(d+a\right)}=0\)

\(\Leftrightarrow\dfrac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\dfrac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)

\(\Leftrightarrow\left(c-a\right)\left[\dfrac{b}{\left(a+b\right)\left(b+c\right)}-\dfrac{d}{\left(c+d\right)\left(d+a\right)}\right]=0\)

\(\Leftrightarrow\dfrac{b}{\left(a+b\right)\left(b+c\right)}=\dfrac{d}{\left(c+d\right)\left(d+a\right)}\) (do \(c\ne a\))

\(\Leftrightarrow b\left(cd+ca+d^2+da\right)=d\left(ab+ac+b^2+bc\right)\)

\(\Leftrightarrow bcd+abc+bd^2+abd=abd+acd+b^2d+bcd\)

\(\Leftrightarrow abc+bd^2-acd-b^2d=0\)

\(\Leftrightarrow ac\left(b-d\right)-bd\left(b-d\right)=0\)

\(\Leftrightarrow\left(b-d\right)\left(ac-bd\right)=0\)

\(\Leftrightarrow ac=bd\) (do \(b\ne d\))

 Do đó \(A=abcd=ac.ac=\left(ac\right)^2\), mà \(a,c\inℕ^∗\) nên A là SCP (đpcm)

 

 

Lương Đại
Xem chi tiết
Jenner
Xem chi tiết
Jenner
31 tháng 7 2021 lúc 20:18

Giúp mình với ạ TT!!!