chứng minh rằng với mọi n thuộc N thì ( n^3 + 3n^2 -4n ) chia hết cho 6
chứng minh rằng: \(3^{4n+2}+2.4^{3n+1}\)chia hết cho 17 với mọi n thuộc N
Giải:
Ta có:
\(3^{4n+2}=9.9^{2n}=\) \(9.\left(17-8\right)^{2n}=17k+9.64^n\)
\(2.4^{3n+1}=8.64^n\)
\(\Rightarrow3^{4n+2}+2.4^{3n+1}=17k+17.64^n\)
\(=17\left(k+64^n\right)⋮17\forall x\in N\) (Đpcm)
CHỨNG MINH RẰNG:
a. \(11^{n+2}+12^{2n+1}\)chia hết cho 133 với mọi n thuộc N.
b. \(3^{4n+2}+2.4^{3n+1}\)chia hết cho 17 với mọi n thuộc N.
c. \(3.5^{2n+1}+2^{3n+1}\)chia hết cho 17 với mọi n thuộc N.
a) Giải:
Đặt \(A_n=11^{n+2}+12^{2n+1}\)\((*)\) Với \(n=0\) ta có:
\(A_0=11^2+12^1=133\) \(⋮133\Rightarrow\) \((*)\) đúng
Giả sử \((*)\) đúng đến giá trị \(k=n\) tức là:
\(B_k=11^{k+2}+12^{2k+1}\) \(⋮133\left(1\right)\)
Xét \(B_{k+1}-B_k\)
\(=11^{k+1+2}+12^{2\left(k+1\right)+1}-\left(11^{k+2}+12^{2k+1}\right)\)
\(=11^{k+3}-11^{k+2}+12^{2k+3}-12^{2k+1}\)
\(=10.11^{k+2}+143.12^{2k+1}\)
\(=10.121.11^k+143.12.144^k\)
\(\equiv\) \(10.121.11^k+10.12.11^k\)
\(\equiv\) \(10.11^k\left(121+12\right)\) \(\equiv\) \(0\left(mod133\right)\)
Theo giả thiết quy nạy \(\left(1\right)\) ta có: \(B_k⋮133\Leftrightarrow B_{k+1}⋮133\)
Hay \((*)\) đúng với \(n=k+1\) \(\Rightarrow\) Đpcm
Chứng minh rằng (4n-3)^2-(3n-4)^2 chia hết cho 7 với mọi n thuộc Z
\(=\left(4n-3\right)^2-\left(3n-4\right)^2\)
\(=\left[\left(4n-3\right)+\left(3n-4\right)\right]\left[\left(4n-3\right)\right]-\left(3n-4\right)\)
\(=\left(7n-7\right)\left(n+1\right)=7\left(n-1\right)\left(n+1\right)\)
Vậy \(\left(4n-3\right)^2-\left(3n-4\right)^2\) Chia hết cho 7 với mọi n thuộc Z
\(\left(4n-3\right)^2-\left(3n-4\right)^2=\left[\left(4n-3\right)+\left(3n-4\right)\right]\left[\left(4n-3\right)-\left(3n-4\right)\right]=\left(7n-7\right)\left(n+1\right)=7\left(n-1\right)\left(n+1\right)\)
Bài 1: Tìm n thuộc N để
a) 3n+7 chia hết cho n
b) n+10 chia hết cho n-1
c) 3n+5 chia hết Cho n-2
Bai 2 chứng minh rằng (5n+7).(4n+6) chia hết 2 với mọi n thuộc N
\(^{_{ }\in}\)
Chứng minh với mọi n thuộc Z thì:
a, n^7 -n chia hết cho 7
b, 2n^3+3n^2+n chia hết cho 6
c, n^5-5n^3+4n chia hết cho 120
d,n^3-3n^2-n+3 chia hết cho 48
CÁC BN GIÚP MIK VS NHA!!! CẢM ƠN NHÌU NHÌU NEK!!!>3<!!!
a) Sử dụng định lí Fermat nhỏ: Với mọi \(n\inℕ\), \(p\ge2\)là số nguyên tố. Ta luôn có \(n^p-n⋮7\)
Dễ thấy 7 là số nguyên tố. Do đó \(n^7-n⋮7\)
Có thể sự dụng pp quy nạp toán học hay biến đổi đẳng thức rồi sử dụng pp xét từng giá trị tại 7k+n với 7>n>0
b)Ta có: \(2n^3+3n^2+n=2n^3+2n^2+n^2+n\)
\(=n^2\left(2n+1\right)+n\left(2n+1\right)\)
\(=n\left(n+1\right)\left(2n+1\right)\)
Ta thấy n(n+1) chia hết 2. Chỉ cần chứng minh thêm đằng thức trên chia hết cho 3
Đặt n=3k+1 và n=3k+2. Tự thế vài và CM
c) Tương tự: \(n^5-5n^3+4n=n^3\left(n^2-1\right)-4n\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n^3-4n\right)\)
\(=\left(n-1\right)\left(n+1\right)n\left(n^2-4\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\)
Sắp xếp lại cho trật tự: \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Dễ thấy đẳng thức trên chia hết cho 5
Mà ta có: \(n\left(n+1\right)\left(n+2\right)⋮3\)
Và \(\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮4\)
Và tích của hai số bất kì cũng chia hết cho 2
Vậy đẳng thức trên chia hết cho 3.4.2.5=120
Cậu cuối bn chứng minh cách tương tự. :)
Mik cảm ơn bn nhìu nha!!!!^-^!!!
Chứng minh rằng : Với mọi n lẻ thì :
a, n^2 +4n+3 vhia hết cho 8
b, n^3 +3n^2-n-3 chia hết cho 48
giai ho minh nha
a, n^2+4n+3 = (n^2-1) +4n+4 = (n-1)(n+1) +4(2a+1)+4 = (n-1)(n+1)+8a+4+4
=(n-1)(n+1)+8a+8 = (n-1)(n+1) + 8.(a+1)
vì n là lẻ => (n-1) và (n+1) là hai số chẵn liên tiếp => (n-1)(n+1)*8
và 8(a+1)*8 => (n-1)(n+1) + 8.(a+1) *8
vậy n^2+4n+3*8 với n là lẻ ( dấu * là dấu chia hết nhé)
b, n^3+3n^2-n-3 = (n^3-n) + (3n^2-3) = n(n^2-1) + 3(n^2-1)= n.(n-1)(n+1) + 3.(n-1)(n+1)
=>3(n-1)(n+1) *8 và n(n-1)(n+1)*8 ( vì theo nguyên lý câu a thì (n-1)(n+1)*8 ) (1)
vì n;n-1;n+1 là 3 số tự nhiên liên tiếp nên n(n+1)(n-1) chia hết cho 3 và 2 => n(n-1)(n+1)*6
và 3(n-1)(n+1)*3 mà n-1 là chẵn nên 3(n-1)(n+1)*2 => 3(n-1)(n+1)*6
=> n(n-1)(n+1) + 3(n-1)(n+1) *6 (2)
từ (1) và (2) => n(n-1)(n+1) + 3(n-1)(n+1) * 6.8 = 48 hay n^3+3n^2-n-3*48
vậy với n là lẻ thì n^3+3n^2 -n-3 luôn chia hết cho 48
1/ Chứng minh n5-5n3+4n chia hết cho 120 với mọi số nguyên n
2 / Chứng minh rằng n3+3n2+n+3 chia het chi 48 với mọi số lẽ n
3/ CMR n^4+4n3-4n2-16n chia hết cho 384 với mọi số nguyên n
1,
A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
A chia hết cho 120 (vìđây là 5 số liên tiếp, vì thế nó chia hết cho 2, 3, 4, 5. Mà 2.3.4.5=120 nên A chia hết cho 120 Với mọi n thuộc Z.)
chứng minh rằng:
a) (n+6)^2-(n-6)^2 chia hết cho 24 với mọi n thuộc Z
b) n^2+4n+3 chia hết cho 8 với mọi n thuộc Z
c) (n+3)^2-(n-1)^2 chia hết cho 8 với mọi
giải chi tiết,cảm ơn!
a) \(\left(n+6\right)^2-\left(n-6\right)^2\)
\(=\left[\left(n+6\right)-\left(n-6\right)\right]\left[\left(n+6\right)+\left(n-6\right)\right]\)
\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)
\(=12.2n\)
\(=24n\)
Vì 24n chia hết cho 24 với mọi n
=> (n + 6)2 - (n - 6)2 chia hết cho 24 với mọi n thuộc Z (Đpcm)
b) P/s: Bài này cậu thiếu điều kiện n lẻ nên mình thêm vào mới giải được nha.
\(n^2+4n+3\)
\(=n^2+n+3n+3\)
\(=n\left(n+1\right)+3\left(n+1\right)\)
\(=\left(n+3\right)\left(n+1\right)\)
Vì n là số lẻ nên n = 2k + 1 ( k thuộc Z )
Thay n = 2k + 1 vào ta được
\(\left(n+3\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1+1\right)\)
\(=\left(2k+4\right)\left(2k+2\right)\)
\(=2\left(k+2\right)2\left(k+1\right)\)
\(=4\left(k+2\right)\left(k+1\right)\)
Vì (k + 2)(k + 1) là tích của hai số liên tiếp
=> (k + 2)(k + 1) chia hết cho 2
=> 4(k + 2)(k + 1) chia hết cho 8
=> n2 + 4n + 3 chia hết cho 8 với mọi số nguyên n lẻ ( Đpcm )
c) \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left[\left(n+3\right)-\left(n-1\right)\right]\left[\left(n+3\right)+\left(n-1\right)\right]\)
\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)
\(=4\left(2n+2\right)\)
\(=4.2\left(n+1\right)\)
\(=8\left(n+1\right)\)
Vì 8(n + 1) chia hết cho 8 với mọi n
=> (n + 3)2 - (n - 1)2 chia hết cho 8 với mọi n ( Đpcm )
Chứng minh rằng với mọi n thuộc N thì 34n+1+2 chia hết cho 5