tìm GTLN của\(B\frac{2011-x}{11-x}\) và tìm x nguyên để B đạt GTLN
Tìm x > 0 để B = \(x = {x \over (x+2011)^2}\) đạt GTLN. TÌm GTLN.
TÌm x > 0 để B = \(\frac{x}{\left(x+2011\right)^2}\)đạt GTLN. Tìm GTLN.
Tìm x để y=x/(x+2011)^2 đạt GTLN. tìm GTLN đó
\(y=\frac{x}{\left(x+2011\right)^2}\)
Với x ≤ 0 => y ≤ 0
Với x > 0
Áp dụng bất đẳng thức Cauchy ta có :
\(x+2011\ge2\sqrt{2011x}\)
⇔ \(\left(x+2011\right)^2\ge8044x\)
⇔ \(\frac{1}{\left(x+2011\right)^2}\le\frac{1}{8044x}\)
⇔ \(\frac{x}{\left(x+2011\right)^2}\le\frac{1}{8044}\)
Đẳng thức xảy ra khi x = 2011
=> yMax = 1/8044 <=> x = 2011
Tìm x thuộc Z để \(A=\frac{32-2x}{11-x}\)đạt GTLN .Tìm GTLN của A
TA CÓ : 32-2X/11-X
=10+22-2X/11-X
=10+2(11-X)/11-X
=10/11-X + 2(11-X)/11-X
=10/11-X +2
ĐỂ Amin =>10/11-X + 2 BÉ NHẤT
=> 10/11-X BÉ NHẤT
=> 11-X LỚN NHẤT . MÀ X thuôc Z
=>11-x=11 => X=0
=> Amin=32-2x0/11-0 =32/11
VÂY Amin=32/11 <=> X=0
\(A=\frac{32-2x}{11-x}=\frac{10}{11-x}+\frac{22-2x}{11-x}=\frac{10}{11-x}+\frac{2\left(11-x\right)}{11-x}=\frac{10}{11-x}+2\)
A đạt giá trị lớn nhất => \(\frac{10}{11-x}\) lớn nhất => 11-x lớn nhỏ nhất > 0
mà x thuộc Z => 11-x=1 => x=10
Vậy \(A_{max}=\frac{10}{11-10}+2=12\) khi x=10
Tìm nguyên x
B=3x-11/x đạt GTLN
Bài giải
\(B=\frac{3x-11}{x}=\frac{3x}{x}-\frac{11}{x}=3-\frac{11}{x}\)
\(B\) đạt \(GTLN\)khi \(\frac{11}{x}\) đạt giá trị nhỏ nhất
\(\Leftrightarrow\text{ }x\) đạt giá trị lớn nhất
??? Tìm đâu ra x lướn nhất đây )):
Bài giải
\(B=3x-\frac{11}{x}\)
\(B\) đạt \(GTLN\)khi \(\frac{11}{x}\) đạt giá trị nhỏ nhất
\(\Leftrightarrow\text{ }x\) đạt giá trị lớn nhất
=>> Đề của bạn sai rồi !
B= 3|x|+2/3|x|-1
Tìm x€Z để B đạt GTLN. Tìm GTLN của B
Tìm x€Z để B €N
Cho biểu thức \(M=\left(1-\frac{6-2x^3}{x^6-9}\right).\frac{4}{x^5+3x^2}:\left(\frac{6x^6-24}{x^9+6x^6+9x^3}:\left(\frac{3x^2}{2}+\frac{3}{x}\right)\right)\)
a/ Rút gọn M
b/ Tìm các giá trị nguyên của x để M đạt GTLN. Tìm GTLN đó
Tìm giá trị nguyên của x để \(\frac{5}{x+2}\) đạt GTLN ?
Cho biểu thức \(A=\frac{2006-x}{6-x}\).Tìm giá trị nguyên của x để A đạt GTLN
\(A=\frac{2006-x}{6-x}=\frac{6+2000-x}{6-x}=\frac{\left(6-x\right)+2000}{6-x}=\frac{6-x}{6-x}+\frac{2000}{6-x}=1+\frac{2000}{6-x}\)
A lớn nhất <=> \(\frac{2000}{6-x}\) lớn nhất <=> 6-x > 0 và nhỏ nhất <=>6-x=1<=>x=5
Thay x=5 vào A,ta đc:
\(A=1+\frac{2000}{6-5}=1+2000=2001\)
Vậy tại x=5 thì A có GTLN là 2001
\(A=\frac{2006-x}{6-x}=\frac{6+2000-x}{6-x}=\frac{\left(6-x\right)+2000}{6-x}=1+\frac{2000}{6-x}\)
A lớn nhất=>\(\frac{2000}{6-x}\)lớn nhất=>6-x nhỏ nhất=>x lớn nhất
TH1:6-x<0=>x>6=>ko có giá trị x lớn nhất thỏa mãn x>6
TH2:6-x>0=>x<6=>x=5
Vậy x=5 thì GTLN của \(A=\frac{2006-5}{6-5}=\frac{2001}{1}=2001\)
cho A=x-3/x+1
a)tìm x để A=1/5
b) tìm x nguyên để A thuộc nguyên
c) tìm x nguyê để a đạt GTLN
\(A=\frac{x-3}{x+1}\)
a,
\(A=\frac{x-3}{x+1}=\frac{1}{5}\)
\(\Leftrightarrow\left(x-3\right)\cdot5=1\cdot\left(x+1\right)\)
\(\Leftrightarrow5x-15=x+1\)
\(\Leftrightarrow5x-x=1+15\)
\(\Leftrightarrow4x=16\)
\(\Leftrightarrow x=4\)
vậy A = 1/5 khi x = 4
\(b,A=\frac{x-3}{x+1}\inℤ\Leftrightarrow x-3⋮x+1\)
\(\Rightarrow x+1-4⋮x+1\)
\(x+1⋮x+1\)
\(\Rightarrow4⋮x+1\)
\(\Rightarrow x+1\inƯ\left(4\right)=\left\{-1;1;-2;2;-4;4\right\}\)
\(\Rightarrow x\in\left\{-2;0;-3;1;-5;3\right\}\)
vậy A nguyên khi x = -2; 0; -3; 1; -5; 3
\(c,A=\frac{x-3}{x+1}=\frac{x+1-4}{x+1}=1-\frac{4}{x+1}\)
để A đạt GTLN thì \(\frac{4}{x+1}\) nhỏ nhất
=> x + 1 lớn nhất
=> A không có GTLN