Cho tam giác ABC, lấy O nằm trong. Kẻ OD vuông góc BC; OE vuông góc với AC. Biết rằng OD=OE=OF
a, CMR: AE=AF
b, Lấy M thuộc BC sao cho BM=BA. CMR: FD//AM
c, Lấy N thuộc BC sao cho CN=CA. CMR NE=NF
d, CMR tam giác MON cân
Giuppp tớ với ạ :<
cho tam giác ABC nhọn (AC<AB). Gọi O là trung điểm của BC. Trên tia đối OA lấy điểm D sao cho OD = OA.
a) chứng minh tam giác OAC = tam giác ODB
B) chứng minh AC//BD
c) Kẻ AH vuông góc BC tại H; DK vuông góc tại K chứng minh : O là trung điểm của HK
a: Xét ΔOAC và ΔODB có
OA=OD
\(\widehat{AOC}=\widehat{DOB}\)
OC=OB
Do đó: ΔOAC=ΔODB
b: Xét tứ giác ABDC có
O là trung điểm của BC
O là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra: AC//BD
Cho tam giác ABC vuông tại A, trong tam giác chọn 1 điểm O, từ O kẻ OE vuông góc với AC, OD vuông tóc với BC, OF vuông góc với AB. tìm O sao cho OD^2 + OF^2 + OE^2 đạt giá trị nhỏ nhất
Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC. Rrên tia đối HA lấy điểm M sao cho HA = HM. Gọi D là trung điểm của BC. Trên tia đối của tia DA lấy E sao cho DA = DE.
a, C/m : AB=CE=BM
b, C/m : Tam giác AME là tam giác vuông
c, Kẻ BI vuông góc AE, EK vuông góc BC. Tia BI cắt tia EK tại O. C/m: OB=OE.
d, C/m : OD vuông góc với AC.
Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC. Rrên tia đối HA lấy điểm M sao cho HA = HM. Gọi D là trung điểm của BC. Trên tia đối của tia DA lấy E sao cho DA = DE.
a, C/m : AB=CE=BM
b, C/m : Tam giác AME là tam giác vuông
c, Kẻ BI vuông góc AE, EK vuông góc BC. Tia BI cắt tia EK tại O. C/m: OB=OE.
d, C/m : OD vuông góc với AC.
Cho tam giác ABC vuông tại A, có góc B=60 độ. Kẻ AH vuông góc với BC (H thuộc BC). Trên HC lấy điểm D sao cho HD=HB. Từ C kẻ CE vuông góc với AD.
a) CM tam giác ABD đều
b) CM: DA=DC và EH vuông góc với AB
c) Gọi O là một điểm nằm trong tam giác ABC. CMR
\(AB+BC+CA/2<OA+OB+OC<AB+BC+CA\)
a, xét tam giác AHD và tam giác AHB có : AH hcung
góc AHD = góc AHB = 90
HD = HB (Gt)
=> tam giác HAB = tam giác HAD (2cgv)
=> AD = AB (Đn)
=> tam giác ABD cân tại (Đn)
có góc BAC = 60 (gt)
=> tam giác ABD đều
b, tam giác ABC vuông tại A (gt)
=> góc ABC + góc ACB = 90 (Đl)
góc ABC = 60 (gt)
=> góc ACB = 30 mà tam giác ABC vuông tại A (gt)
=> AB = BC/2 (đl)
có AB = AD = BD do tam giác ABD đều (câu a)
=> AD = BD = BC/2
BD + CB = BC
=> AD = DC = BC/2
Cho tam giác ABC gọi O là điểm nằm trong tam giác sao cho góc ABO = góc ACD. Kẻ OH vuông góc với AB, OK vuông góc với AC. Lấy M là trung điểm của BC , E và F là trung điểm của OB và OC. C/M: MK=MH
Cho △ABC, O là trung điểm của BC. Từ B kẻ BD vuông góc với AC (D ∈ AC).Từ C kẻ CE vuông góc với AB (E∈AB)
a,CMR:\(OD=\dfrac{1}{2}BC\)
b,Trên tia đối của tia DE lấy N, trên tia đối của ED lấy M sao cho EM=DN. Chứng minh rằng △OMN là tam giác cân
a) Ta có: ΔDBC vuông tại D(BD⊥AC tại D)
mà DO là đường trung tuyến ứng với cạnh huyền BC(O là trung điểm của BC)
nên \(DO=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
Cho tam giác ABC, lấy điểm M nằm trong tam giác sao cho góc ABM bằng góc ACM. Kẻ MH vuông góc AB, MK vuông góc AC, I là trung điểm BC. Chứng minh:
a) IH = IK
b) Tìm điều kiện của tam giác ABC để HIK là tam giác đều
Cho tam giác ABC, lấy điểm M nằm trong tam giác sao cho góc ABM bằng góc ACM. Kẻ MH vuông góc AB, MK vuông góc AC, I là trung điểm BC. Chứng minh:
a) IH = IK
b) Tìm điều kiện của tam giác ABC để HIK là tam giác đều