Cho tam giác ABC, qua A vẽ đường thẳng xy tùy ý. Gọi D, E là chân dường
vuông góc vẽ từ B, C xuống xy. Xác định vị trí của xy để BD + CE đạt giá trị nhỏ nhất.
Cho tam giác ABC, qua A vẽ đường thẳng xy tùy ý. Gọi D, E là chân dường vuông góc vẽ từ B, C xuống xy. Xác định vị trí của xy để BD + CE đạt giá trị nhỏ nhất
Bày này chỉ có đạt giá trị lớn nhất thôi nhé ! Bạn xem lại đề !
Lời giải :
Gọi \(M\) là trung điểm của \(BC.\) \(\Rightarrow AM\) không đổi.
Kẻ \(KM\perp DE\)
Khi đó tứ giác \(BDEC\) là hình thang. \(\left(BD//KM//EC\right)\)
Xét hình thang \(BDCE\) có : \(M\) là trung điểm của \(BC,\) \(BD//KM//EC\) ( cmt )
\(\Rightarrow K\) là trung điểm của \(DE\)
\(\Rightarrow KM\) là đường trung bình của hình thang \(BDEC\)
\(\Rightarrow BD+EC=2.KM\)
Mặt khác ta có : \(KM\le AM\) nên \(BD+EC\le2AM\)
Dấu "=" xảy ra \(\Leftrightarrow xy\perp AM\)
Vậy \(BD+CE\) đạt giá trị lớn nhất là \(2AM\) \(\Leftrightarrow xy\perp AM\)
cho tam giác ABC có 3 góc nhọn. Đường thẳng xy đi quả A cắt BC tại M. Gọi D và E lần lượt là chân đường cao của B và C xuống xy. Hãy xác định vị trí của xy để BD + CE đạt GTLN
@Phạm Thành Đông @Đoàn Đức Hà
Với mọi vị trí điểm \(M\in BC\), ta luôn có:
\(S_{MAB}+S_{MAC}=S_{ABC}\)
Vì \(\Delta ABM\)có \(BD\perp AM\)
\(\Rightarrow S_{MAB}=\frac{BD.AM}{2}\)
Vì \(\Delta CAM\)có \(CE\perp AM\)
\(\Rightarrow S_{MAC}=\frac{CE.AM}{2}\)
Do đó \(\frac{BD.AM}{2}+\frac{CE.AM}{2}=S_{ABC}\)
\(\Rightarrow\left(BD+CE\right)AM=2S_{ABC}\)
\(\Rightarrow BD+CE=\frac{2S_{ABC}}{AM}\)
Vì \(S_{ABC}\)không đổi \(\Rightarrow2S_{ABC}\)không đổi.
Do đó \(\left(BD+CE\right)_{max}\Leftrightarrow AM_{max}\)
Giả sử \(AB\le AC\)thì trong 2 đường xiên AM và AC, thì AM là đường xiên ngắn hơn. Do đó : \(AM\le AC\).
Dấu bằng xảy ra \(\Leftrightarrow M\equiv C\).
\(\Rightarrow\)Đường thẳng xy phải dựng là đường thẳng là đường thẳng chứa cạnh lớn nhất trong 2 cạnh AB hoặc AC thì \(BD+CE\)đạt giá trị lớn nhất.
Vậy...
Cho tam giác ABC. Đường thẳng xy đi qua đỉnh A. gọi M,N là chân đường vuông goc kẻ từ B và C xuống xy. Hãy xác định vị trí của đương thẳng xy để BM + CN đạt lớn nhất.
Gọi D là trung điểm BC. Kẻ MI vuông với xyy tại I.
Vì BM vuông góc xy
CN vuông góc xy
DI vuông góc xy
=> BM // CN // DI
Vì BM // CN
=> BMNC là hình thang
mà D là trung điểm BC, DI // BM // CN
=> I là trung điểm MN
mà D là trung điểm BC
=> DI là đường trung bình của hình thang BMNC.
=> DI = \(\frac{BM+CN}{2}\)
=> BM + CN = 2DI
Có DI < DA ( quan hệ giữa đường vuông góc và đường xiên.
Để BM + CN lớn nhất
thì DI lớn nhất
=> DI trùng AD
=> DA vuông góc với xy
Vậy, nếu xy vuông góc với đường trung tuyến AD của tam giác ABC thì BM + CN lớn nhất.
Sao lại thế được. Xin lỗi nhưng cách giải của bạn hơi mâu thuẫn...
bạn có làm được trường hợp xy cắt BC không? Cảm ơn
Cho tam giác ABC vuông cân tại A. Qua A vẽ đường thẳng xy không cắt cạnh BC. Gọi D và E thứ tự là hình chiếu của B và C trên xy. Xác định vị trí của xy để BD + CE=BC.
Vì △ABC vuông cân tại A (gt) => AB = AC và ∠ABC = ∠ACB = 45o
Để xy không cắt BC <=> xy // BC <=> DE // BC => ∠ABC = ∠BAD = 45o , ∠ACB = ∠CAE = 45o
Lại có: +) DE // BC (cmt) mà BD ⊥ DE (gt)
=> BC ⊥ BD (từ vuông góc đến song song)
+) DE // BC (cmt) mà CE ⊥ DE (gt)
=> BC ⊥ CE (từ vuông góc đến song song)
Xét △BAD vuông tại D có: ∠BAD + ∠ABD = 90o (tổng 2 góc nhọn trong △ vuông)
=> 45o + ∠ABD = 90o
=> ∠ABD = 45o mà ∠BAD =45o
=> ∠ABD = ∠BAD
=> △ABD vuông cân tại D
=> BD = DA
Xét △CAE vuông tại E có: ∠CAE + ∠ACE = 90o (tổng 2 góc nhọn trong △ vuông)
=>45o + ∠ACE = 90o
=> ∠ACE = 45o mà ∠CAE = 45o
=> ∠CAE = ∠ACE
=> △CAE vuông cân tại E
=> EA = EC
Xét △BCD vuông tại B và △EDC vuông tại E
Có: ∠BDC = ∠DCE (BC // DE)
DC là cạnh chung
=> △BCD = △EDC (ch-gn)
=> BC = DE (2 cạnh tương ứng)
=> BC = DA + AE
=> BD + EC = BC (đpcm)
Cho điểm M nằm trên nửa đường tròn tâm O đường kính AB. Qua M vẽ tiếp tuyến xy và gọi C, D lần lượt là hình chiếu vuông góc của A, B trên xy. Xác định vị trí của điểm M trên (O) sao diện tích tứ giác ABCD đạt giá trị lớn nhất
Ta có ABCD là hình thang vuông tại C và D
Mà O Là trung điểm AB và OM vuông góc với CD( tiếp tuyến của (O)
=> AD+BC=2OM=2R. Chú ý rằng CD ≤ AB (hình chiếu đường xiên)
=> S A B C D = 1 2 A D + B C . C D
= R.CD ≤ R.AB = 2 R 2
Do đó S A B C D lớn nhất khi CD=AB hay M là điểm chính giữa nửa đường tròn đường kính AB
Cho hình bình hành ABC. Qua A vẽ đường thẳng d không cắt hình bình hành . Gọi B' , C' , D' lần lượt là hình chiếu vuông góc của các điểm B , C , D trên đường thẳng d . Xác định vị trí của đường thẳng d để tổng BB' + CC' + DD' đạt giá trị nhỏ nhất .
Cho tam giác ABC vuông cân tại A. Qua A vẽ đường thẳng xy không cắt cạnh BC. Gọi D và E thứ tự là hình chiếu của B và C trên xy. Xác định vị trí của xy để BD+ CE +BC
BD+ CE +BC ??
Đề đúng có pk là : BD + CE = BC ??
Cho tam giác ABC vuông cân tại A. Qua A vẽ đường thẳng xy không cắt cạnh BC. Gọi D và E thứ tự là hình chiếu của B và C trên xy. Xác định vị trí của xy để BD+ CE +BC
Cho tam giác ABC. Gọi D là một điểm trên đường trung tuyến AM. Qua D vẽ đường thẳng xy cắt hai cạnh AB và AC. Gọi H; I; K lần lượt là hình chiếu của A; B; C trên tia xy. Xác định vị trí của D để \(AH=\frac{BI+CK}{2}\)