Cho P=\(\frac{2n+1}{3n+2}\)(n thuộc z)
CMR: P là phân số tối giản
bài 1: với mọi số tự nhiên n chứng minh các phân số sau là phân số tối giản
A=2n+1/2n+2
B=2n+3/3n+5
Bài 2:
a) Cho phân số: N=5n+7/2n+1( n thuộc Z, n khác -1/2). Tìm n để N là phân số tối giản
b) Cho phân số: P=5-2n/4n+5 ( n thuộc Z, n khác -5/4). Tìm n để P là phân số tối giản
giúp mk với
mk sẽ tick cho!!
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
các bn giải hộ mk bài 2 ik
thật sự mk đang rất cần nó!!!
Tìm n thuộc Z để :
a) 2n+3/4n+1 là phân số tối giản
b) 3n+2/7n+1 là phân số tối giản
c) 2n+7/5n+3 là phân số tối giản
a) \(\frac{2n+3}{4n+1}\) là phân số tối giản
\(\frac{2n+3}{4n+1}\)= \(\frac{2+3}{4+1}\) =\(\frac{5}{5}\)=1
=>n=1
mình ko chắc là đúng nha
Chứng tỏ phân số 2n+1/3n+2 là phân số tối giản với mọi n thuộc Z
Gọi d là ƯCLN của 2n + 1 và 3 n + 2
Ta có
2n+1 chia hết cho d => 3 ( 2n+1) chia hết cho d => 6n +3 chia hết cho d (1)
3n + 1 chia hết cho d => 2(3n+1) chia hết cho d => 6n + 4 Chia hết cho d ( 2 )
Từ (1), (2)
=> 6n+4 - 6n - 3 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN ( 2n + 1 : 3n + 2 ) = 1
=> Phân số 2n+1/3n+2 tối giản với mọi n thuộc Z
Phương pháp chứng minh 1 p/s tối giản là :
Chứng minh ƯCLN của tử và mẫu = 1
Còn cách làm : Tự làm
Gọi d= ƯCLN (2n+1, 3n+2)(d thuộc N*)
\(\Rightarrow\)2n+1\(⋮\)d
3n+2\(⋮\)d
\(\Rightarrow\)(2n+1).3\(⋮\)d
(3n+2).2\(⋮\)d
\(\Rightarrow\)6n+3\(⋮\)d
6n+4\(⋮\)d
\(\Rightarrow\)(6n+4)-(6n+3)\(⋮\)d
\(\Rightarrow\)1\(⋮\)d
\(\Rightarrow\)d=1
\(\Rightarrow\)2n+1/3n+2 là phân số tối giản.
\(\Rightarrow\)Đpcm.
chứng tỏ rằng:
a) 15n+1/ 30n+1 là phân số tối giản (n thuộc Z )
b) n3+2n/n4+3n2+1 là phân số tối giản ( n thuộc Z )
CMR \(\frac{2n+3}{3n+5}\) (n∈Z) là phân số tối giản
Gọi ƯCLN của tử và mẫu là d.
Ta có : \(2n+3⋮d\) <=> \(3\left(2n+3\right)=6n+9⋮d\)
và \(3n+5⋮d\) <=> \(2\left(3n+5\right)=6n+10⋮d\)
=> \(6n+10-\left(6n+9\right)⋮d\)<=> \(1⋮d\)
Mà d nguyên nên d=1 => P/s tối giản
Giả sử d là ƯCLN(2n+3,3n+5)\(\left(d\inℕ^∗\right)\)
Khi đó: \(\hept{\begin{cases}\left(2n+3\right)⋮d\\\left(3n+5\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}\left(6n+9\right)⋮d\\\left(6n+10\right)⋮d\end{cases}}}\)
\(\Rightarrow\left[\left(6n+10\right)-\left(6n+9\right)\right]⋮d\Rightarrow1⋮d\Rightarrow d=1\left(d\inℕ^∗\right)\)
\(\Rightarrow\frac{2n+3}{3n+5}\)là phân số tối giản (đpcm)
Gọi ƯCLN của tử và mẫu là :d
Ta có:\(2n+3⋮d\Leftrightarrow3.\left(2n+3\right)=6n+9⋮d\)
Và\(3n+5⋮d\Leftrightarrow2.\left(3n+5\right)=6n+10⋮d\)
\(\Rightarrow6n+10-\left(6n+9\right)⋮d\Rightarrow1⋮d\)gia
Mà d nguyên nên d là:1=> phân số tối giản
CMR với mọi n thuộc N thì phân số sau là phân số tối giản
a)\(\frac{5n+2}{3n+1}\)
b)\(\frac{2n+5}{3n+7}\)
c)\(\frac{12n+1}{30n+2}\)
Hướng dẫn: Đặt (tử, mẫu)=d
Phương pháp: Tìm được d = 1.
Cách làm: Nhân tử với a, nhân mẫu với b (a, b là số nguyên) sao cho khi trừ đi 2 kết quả mới triệt tiêu được 2 biểu thức chứa n.
Cuối cùng sẽ tìm được 1 là bội của b => d=1
Còn lại cậu tự làm nhé!
Chứng tỏ rằng phân số \(\frac{2n+1}{3n+2}\) là phân số tối giản
Cho A = \(\frac{n+2}{n-5}\) (n thuộc Z , n khác 5) tìm x để A thuộc Z
a, Gọi UCLN(2n+1, 3n+2) là d. Ta có:
2n+1 chia hết cho d=> 6n+3 chia hết cho d
3n+2 chia hết cho d=> 6n+4 chia hết cho d
=> 6n+4 - (6n+3) chia hết cho d
=> 1 chia hết cho d
=>ƯCLN(2n+1,3n+2)=1
=>\(\frac{2n+1}{3n+2}\)tối giản(đpcm)
cmr B =2n+3/3n+1(n thuộc N) Là phân số tối giản vậy (n+1,2n-3)=?
tìm n thuộc tập hợp Z sao cho phân số 2n - 1 /3n+2 không tối giản
Lời giải:
Gọi $d=ƯCLN(2n-1, 3n+2)$
$\Rightarrow 2n-1\vdots d; 3n+2\vdots d$
$\Rightarrow 2(3n+2)-3(2n-1)\vdots d$
$\Rightarrow 7\vdots d$
Để phân số đã cho không tối giản thì $d>1$
Mà $7\vdots d\Rightarrow d=7$
Để điều này xảy ra thì $2n-1\vdots 7$
$\Rightarrow 2n-1-7\vdots 7$
$\Rightarrow 2n-8\vdots 7$
$\Rightarrow 2(n-4)\vdots 7$
$\Rightarrow n-4\vdots 7\Rightarrow n=7k+4$ với $k$ nguyên.
Vậy $n$ có dạng $7k+4$ với $k$ nguyên