2020-2019+2018-2017+2016-2015+...+3-2+1
chứng minh 2015/2016 + 2016/2017 + 2017/2018 + 2018/2019 + 2019/2020 + 2020/2015 > 6
Vì:
khi tính bài toán 2015/2016 + 2016/2017 + 2017/2018 + 2018/2019 + 2019/2020 + 2020/2015 này ra thì ta được con số là 6,000003688 con số này phải lớn hơn số 6 nên: 6,000003688 > 6
Vì:khi tính bài toán 2015/2016+2016/2017+2017/2018+2018/2019+ 2019/2020+2020/2015 ta ra được là: 6,000003688 nên: 6,000003688 > 6
2015/2016 + 2016/2017 + 2017/2018 + 2018/2019 + 2019/2020 + 2020/2015 = 6,000003688 vậy: 6,000003688 > 6
Tính :A= [(2018/1)+(2017/2)+(2016/3)+(2015/4)+...+(4/2015)+(3/2016)+(2/2017)+(1/2018)]/[(2019/1)+(2019/2)+(2019/3)+(2019/4)+...+(2019/2015)+(2019/2016)+(2019/2017)+(2019/2018)+(2019/2019)]
Tính :A= [(2018/1)+(2017/2)+(2016/3)+(2015/4)+...+(4/2015)+(3/2016)+(2/2017)+(1/2018)]/[(2019/2)+(2019/3)+(2019/4)+(2019/5)+...+(2019/2015)+(2019/2016)+(2019/2017)+(2019/2018)+(2019/2019)]
a)
Ta có: 2015/2016=1-1/2016
2016/2017=1--1/2020.So sánh 1/2016 và 1/2017 được 1/2016>1/2017
Suy ra 2015/2016<2016/2017
b) 2018/2018=1
2019/2018>1
Vậy 2018/2018 <2019/2018
CHÚC BẠN HỌC TỐT NHÉ!!!
2020 - 2019 + 2018 - 2017 + 2016 - 2015 + ... - 3 + 2 - 1
câu hỏi khóc búa :>
2020 - 2019 + 2018 - 2017 + 2016 - 2015 + ... - 3 + 2 - 1
= 1 + 1 + 1 + ... + 1
Vì có 2020 số,mỗi đôi chẵn lẻ trừ đi bằng 1 rồi cộng lại.
Tổng cộng 1010 đôi = 1010 số 1
= 1 x 1010
= 1010
vắt óc suy nghĩ hừm.........................................................................................thôi dẹp mẹ hắn đi mệt người
Tính tổng: S = 2020 + 2019 – 2018 – 2017 + 2016 + 2015 – 2014 – 2013 + … + 4 + 3 – 2 – 1 . Vậy S = .................
S = 2020 + 2019 - 2018 - 2017 + 2016 + 2015 - 2014 - 2013 + ... + 4 + 3 - 2 - 1
= ( 2020 + 2019 - 2018 - 2017 ) + ( 2016 + 2015 - 2014 - 2013 ) + ... + ( 4 + 3 - 2 - 1 ) (có tất cả 2020 : 4 = 505 nhóm)
= 4 + 4 + ... + 4
= 4. 505 = 2020
Vậy S = 2020.
S= 2020
Bạn huyền đúng rồi đó .
hok tốt
2+3-4+5+6-7+8+9-10+...+2015+2016-2017+2018+2019-2020+2021+2022
HÃY TÌM KẾT QUẢ CỦA PHÉP TÍNH "2022+2020-2019-2018-2017+2016+2015 +2014-2013-2012-2011+...+6+5+ 4-3-2-1"
\(...=2022+2020+\left(-2019+2016-2018+2015-2017+2014\right)+...+\left(6-3+5-2+4-1\right)\)
\(=2022+2020+\left(-3-3-3\right)+\left(-3-3-3\right)+...+\left(-3-3-3\right)+\left(-3-2-1\right)\)
\(=2022+2020+\left(-9\right)+\left(-9\right)+...\left(-9\right)+\left(-6\right)\)
\(=2022+2020+\left(-9\right).\left[\left(2019-9\right):6+1\right].\left[\left(2019+6\right)\right]:2+\left(-6\right)\)
\(=2022+2020+\left(-9\right).336.2025:2+\left(-6\right)\)
\(=2022+2020-3061800-6\)
\(=-3057764\)
1+2-3-4-5+6+7-8-9-10+11+12-13-14-15+...+2011+2012-2013-2014-2015+2016+2017-2018-2019-2020 giup mik v
Lời giải:
$A=(1+2-3-4-5)+(6+7-8-9-10)+(11+12-13-14-15)+....+(2011+2012-2013-2014-2015)+(2016+2017-2018-2019-2020)$
$=(-9)+(-14)+(-19)+....+(-2019)+(-2024)$
$=-(9+14+19+...+2019+2024)$
Số số hạng: $(2024-9):5+1=404$
$A=-(2024+9).404:2=-410666$