Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
huyen phung
Xem chi tiết
Minz Ank
Xem chi tiết
trinh thi hang
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
23 tháng 6 2021 lúc 10:34

x( x + y )2 - y + 1 = 0

<=> x( x2 + 2xy + y2 ) - y + 1 = 0

<=> x3 + 2x2y + xy2 - y + 1 = 0

<=> xy2 + ( 2x2 - 1 )y + x3 + 1 = 0 (*)

Coi (*) là phương trình bậc 2 ẩn y , x là tham số 

(*) có nghiệm <=> Δ ≥ 0 <=> ( 2x2 - 1 )2 - 4x( x3 + 1 ) ≥ 0

<=> 4x4 - 4x2 + 1 - 4x4 - 4x ≥  0

<=> -4x2 - 4x + 1 ≥ 0

<=> \(\frac{-1-\sqrt{2}}{2}\le x\le\frac{-1+\sqrt{2}}{2}\)

Vì x nguyên => x ∈ { -1 ; 0 } 

+) Với x = -1 (*) trở thành -y2 + y = 0 <=> y( 1 - y ) = 0 <=> y = 0 (tm) hoặc y = 1 (tm)

+) Với x = 0 (*) trở thành -y + 1 = 0 <=> y = 1 (tm)

Vậy ( x ; y ) = { ( -1 ; 0 ) , ( -1 ; 1 ) , ( 0 ; 1 ) }

Khách vãng lai đã xóa
trinh thi hang
23 tháng 6 2021 lúc 16:04

cậu ơi có thể giải bài này mà ko dùng denta đc ko ?

Khách vãng lai đã xóa
Khánh Nguyên Phan
Xem chi tiết
Nguyễn Thị Minh Thảo
Xem chi tiết
lâm nhung
Xem chi tiết
 
11 tháng 3 2019 lúc 20:56

Truy cập link để nhận thẻ cào 50k free :

http://123link.vip/7K2YSHxh

Nhanh không cả hết !

Kiệt Nguyễn
4 tháng 10 2020 lúc 7:36

Ta có: \(x-y=x^2+xy+y^2\Rightarrow x^2+\left(y-1\right)x+\left(y^2+y\right)=0\)

Coi phương trình trên là phương trình bậc hai theo ẩn x thì \(\Delta=\left(y-1\right)^2-4\left(y^2+y\right)=-3y^2-6y+1\)

Để phương trình có nghiệm thì \(\Delta\ge0\)hay \(-3y^2-6y+1\ge0\Rightarrow\frac{-3-2\sqrt{3}}{3}\le y\le\frac{-3+2\sqrt{3}}{3}\)

Mà y là số nguyên không âm nên y = 0

Thay y = 0 vào phương trình, ta được: \(x=x^2\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Vậy (x, y) = { (0; 0); (1; 0) }

Khách vãng lai đã xóa
Nguyễn Diễm Cửu Hoa
Xem chi tiết
Diễm Quỳnh Phan Thị
Xem chi tiết
Trọng Messi
Xem chi tiết