cho a/b =b/c CMR a/c =a^2+b^2/b^2 +c^2
giúp mình với nha các bạn cảm ơn
Cho ∆ABC nhọn , Biết AB = c ; BC = a ; AC = b . CMR :
a) a/sinA = b/sinB = c/sinC
b) a^2 = b^2 + c^2 - 2bc . cosA
c) c = b . cosA + a . cosB
Ý a) mk làm được rồi , các bạn làm giúp mình 2 ý còn lại với , mk cảm ơn
Tự vẽ hình
Kẻ BH \(\perp\)AC và \(CK\perp\)AB
Tam giác AKC vuông tại K
=>CK=bsinA (1)
Tam giác BKC vuông tại K
=>CK=asinB (2)
Từ (1) (2)=>bsinA=asinB
<=>\(\frac{a}{sinA}=\frac{b}{sinB}\)
Chứng minh tương tự ta có :\(\frac{a}{sinA}=\frac{c}{sinC}\)
Vậy ....
Cho biểu thức A= ( -a - b + c ) - ( -2.a - 2.b - c ). Rút gọn A
( các bạn giúp mình nha, xin cảm ơn )
A = - a - b + c + 2a+ 2b + c = a + b + 2c
Cho a/c = c/b . Chứng minh rằng : a^2 + c^2 / b^2 + c^2 =a/b
Hộ mình nha , mình đang cần gấp
Cảm ơn các bạn
Cho a/b=c/d . CmR (a-b/c-d)=a^4+b^4/c^4+d^4
Giải họ mình nha. Xin cảm ơn các bạn nhiều. <3
cho a,b,c,d>0 va abcd=1 . CMR: a2+b2+c2+d2+a(b+c)+b(c+d)+d(c+a)
Cho mik hỏi câu này đi!! Mik cần gấp lắm mai mik thi r. Cảm ơn các bạn lun nha!! :))
Bài 1 : Rút gọn a) ( a + b + c ) 2 + ( a + b - c ) 2 -2 x ( a+b) 2 b) 2X x ( 2X -1 ) 2 -3X x ( x+3 ) ( x-3) - 4X x ( X + 1) 2 c) ( a -b+c) 2 -(b-c)2 + 2ab - 2ac d) ( 3x+1) 2 - 2(3x+1) ( 3x+5 ) + ( 3x +5 ) 2 Các bạn ơi ! Các bạn hãy giúp mình nha chiều mai ( chiều thứ tư ) mình phải nộp rùi xin các bạn hãy giúp mình . Mình xin chân thành cảm ơn các bạn !
Các bạn cố gắng giúp mình nha . Mình xin chân thành cảm ơn
Các bạn giúp mình câu số học này với, mình cảm ơn nhiều: Cho a,b,c \(\in\)N* sao cho ab\a2+b2-a CMR: a là số chính phương ( ab\ a2+b2-a tức là ab là ước của a2+b2-a)
Giúp mình mấy câu này với nhé các ban.
1) Cho a,b,c>0 cmr:\(\frac{a}{\sqrt{a^2+b^2}}+\frac{b}{\sqrt{b^2+c^2}}+\frac{c}{\sqrt{c^2+a^2}}\le\frac{3}{\sqrt{2}}\)
2)Cho a,b,c>0 và abc=1. Cmr:\(\sqrt{\frac{a}{4a+4b+1}}+\sqrt{\frac{b}{4b+4c+1}}+\sqrt{\frac{c}{4c+4a+1}}\le1\)
3)Cho a,b,c>0 tm a+b+c=3 Cmr \(\frac{1}{2+a^2+b^2}+\frac{1}{2+b^2+c^2}+\frac{1}{2+c^2+a^2}\le\frac{3}{4}\)
Mình cảm ơn các bạn nhiều
Bài 1:
Đặt \(a^2=x;b^2=y;c^2=z\)
Ta có:\(\sqrt{\frac{x}{x+y}}+\sqrt{\frac{y}{y+z}}+\sqrt{\frac{z}{z+x}}\le\frac{3}{\sqrt{2}}\)
Áp dụng BĐT cô si ta có:
\(\sqrt{\frac{x}{x+y}}=\frac{1}{\sqrt{2}}\sqrt{\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}\frac{3\left(x+z\right)}{2\left(x+y+z\right)}}\)
\(\le\frac{1}{2\sqrt{2}}\left[\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}+\frac{3\left(x+z\right)}{2\left(x+y+z\right)}\right]\)
Tương tự với \(\sqrt{\frac{y}{y+z}}\)và \(\sqrt{\frac{z}{z+x}}\)
Cộng lại ta được:
\(\frac{\sqrt{2}}{3}\left[\frac{x\left(x+y+z\right)}{\left(x+y\right)\left(x+z\right)}+\frac{y\left(x+y+z\right)}{\left(y+z\right)\left(y+x\right)}+\frac{z\left(x+y+z\right)}{\left(z+x\right)\left(z+y\right)}\right]+\frac{3}{2\sqrt{2}}\le\frac{3}{2\sqrt{2}}\)
Sau đó bình phương hai vế rồi
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)đẳng thức đúng
Vậy...
Bài 2:
Trước hết ta chứng minh bất đẳng thức sau:
\(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\le\frac{1}{3}\)
Nhân cả hai vế bđt với 4(a+b+c)4(a+b+c) rồi thu gọn ta được bđt sau:
\(\frac{4a\left(a+b+c\right)}{4a+4b+c}+\frac{4b\left(a+b+c\right)}{4b+4c+a}+\frac{4c\left(a+b+c\right)}{4c+4a+b}\)\(\le\frac{4}{3}\left(a+b+c\right)\)
\(\left[\frac{4a\left(a+b+c\right)}{4a+4b+}-a\right]+\left[\frac{4b\left(a+b+c\right)}{4b+4c+a}-b\right]+\left[\frac{4c\left(a+b+c\right)}{4c+4a+b}-c\right]\le\frac{a+b+c}{3}\)
\(\frac{ca}{4a+4b+c}+\frac{ab}{4b+4c+a}+\frac{bc}{4c+4a+b}\le\frac{a+b+c}{9}\)
Áp dụng bđt cauchy-Schwarz ta có \(\frac{ca}{4a+4b+c}=\frac{ca}{\left(2b+c\right)+2\left(2a+b\right)}\)\(\le\frac{ca}{9}\left(\frac{1}{2b+c}+\frac{2}{2a+b}\right)\)
Từ đó ta có:
\(\text{∑}\frac{ca}{4a+4b+c}\le\frac{1}{9}\text{∑}\left(\frac{ca}{2b+c}+\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ab}{2b+c}\right)=\frac{a+b+c}{9}\)
Đặt VT=A rồi áp dụng bđt cauchy-Schwarz cho VT ta có
\(T^2\le3\left(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\right)\)\(\le3\cdot\frac{1}{3}=1\Leftrightarrow T\le1\)
Dấu = xảy ra khi a=b=c
c bạn tự làm nhé mình mệt rồi :D
Cho các số hữu tỉ với mẫu dương, trong đó \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\). CMR:
a) ad < bc.
b) \(\dfrac{a}{b}\) < \(\dfrac{a+c}{b+d}\) < \(\dfrac{c}{d}\).
Gỉai giúp mình với cảm ơn các bạn nhiều!!!!!!!
Ai giải đúng cho 1 tick!
Lời giải:
a.
$\frac{a}{b}< \frac{c}{d}\Rightarrow \frac{a}{b}-\frac{c}{d}<0$
$\Rightarrow \frac{ad-bc}{bd}< 0$
$\Rightarrow ad-bc<0$ (do $bd>0$)
$\Rightarrow ad< bc$ (đpcm)
b.
$\frac{a}{b}-\frac{a+c}{b+d}=\frac{a(b+d)-b(a+c)}{b(b+d)}=\frac{ad-bc}{b(b+d)}<0$ do $ad-bc<0$ và $b(b+d)>0$
$\Rightarrow \frac{a}{b}< \frac{a+c}{b+d}$
--------
$\frac{a+c}{b+d}-\frac{c}{d}=\frac{d(a+c)-c(b+d)}{d(b+d)}=\frac{ad-bc}{d(b+d)}<0$ do $ad-bc<0$ và $d(b+d)>0$
$\Rightarrow \frac{a+c}{b+d}< \frac{c}{d}$
Ta có đpcm.