Điền dấu(<,>,=)
1/31+1/32 ... +1/89+1/90 5/6
Điền dấu>,<,=
1/31+1/32+1/33 đến +1/89+1/90...... 5/6
Ta có: \(\frac{1}{31}+\frac{1}{32}+.....+\frac{1}{90}=\frac{1}{\frac{\left(90-31+1\right).\left(90+31\right)}{2}}=\frac{1}{3630}.\)
Mà \(\frac{5}{6}=\frac{5.605}{6.605}=\frac{3025}{3630}\)
Vì \(\frac{3025}{3630}>\frac{1}{3630}\)
Nên \(\frac{1}{31}+\frac{1}{32}+.....+\frac{1}{90}< \frac{5}{6}\)
Điền dấu
1/31+1/32+1/33+.....?+1/89+1/90 5/6
A = 1/31 + 1/32 + 1/33 + ... + 1/89 + 1/90 ..... 5/6
A = 5/6 = 1/2 + 1/3
Ta đặt : B = 1/31 + 1/32 + 1/33 + ... + 1/60 ﴾ 30 phân số ﴿
C = 1/61 + 1/62 + 1/63 + .... + 1/90 ﴾ 30 phân số ﴿
Ta có : B = 1/31 + 1/32 + 1/33 + ... + 1/60 > 1/60 + 1/60 + 1/60 + ... + 1/60 = 30 x 1/60 = 1/2
C = 1/61 + 1/62 + 1/63 + ... + 190 > 1/90 + 1/90 + 1/90 + .... + 1/90 = 30 x 1/90 = 1/3
Vì A = B + C > 1/2 + 1/3 = 5/6 nên 1/31 + 1/32 + 1/33 + .. + 1/89 + 1/90 > 5/6
Điền dấu < ; > ; =
3\(\dfrac{1}{5}-\dfrac{8}{3}...........\dfrac{17}{5}-2\dfrac{12}{5}\)
\(\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+....+\dfrac{1}{89}+\dfrac{1}{90}\) ..... \(\dfrac{5}{6}\)
Điền dấu < > = vào chỗ .........., có giải thích
\(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{89}+\frac{1}{90}..........\frac{5}{6}\)
Đã trả lời ở đâu đó rồi (chi tiết)
-Nhận xét, phân tích bài toán:
So sánh với (5/6) =>rút gọn vế trái thành một phân số có mẫu số bằng 6
=> ta chọn số hạng có mẫu số là bội số của 6 để gom lại.
\(\frac{1}{31}+..+\frac{1}{36}>\frac{1}{36}+..+\frac{1}{36}=\frac{6}{36}=\frac{1}{6}\)
\(\frac{1}{37}+...+\frac{1}{42}>\frac{1}{42}+..+\frac{1}{42}=\frac{6}{42}=\frac{1}{7}\)
..........
\(\frac{1}{83}+..+\frac{1}{90}=\frac{1}{90}+...+\frac{1}{90}=\frac{6}{90}=\frac{1}{15}\)
Như vậy sau bước 1 rút vê trái về còn \(\frac{1}{6}+\frac{1}{7}...+\frac{1}{15}\)
Rút gọn tiếp vẫn theo cách trên
\(\frac{1}{7}+..+\frac{1}{12}>\frac{1}{12}+..+\frac{1}{12}=\frac{6}{12}=\frac{3}{6}\)
\(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}>\frac{1}{18}+\frac{1}{18}+\frac{1}{18}=\frac{1}{6}\)
\(VT=\left(\frac{1}{31}+..+\frac{1}{90}\right)>\left(\frac{1}{6}+\frac{3}{6}+\frac{1}{6}\right)=\frac{5}{6}=VP\)
5/6 = 75/90 = 1/90 + 1/90 + 1/90 + ....1/90 (75 số hạng)
1/90 + 1/90 +1/90 = 1/30 (Tổng 3 số hạng 1/90 vế trái = 1/30 vế phải)
1/90 + 1/90 = 1/45 <1/44; 1/43; 1/42, 1/40; 1/39, ...;1/31 (tổng 26 số hạng 1/90 vế trái < tổng 13 số hạng từ 1/31 đến 1/44 vế phải
1/90 + 1/90 + 1/90 < 1/45 + 1/46; 1/47 + 1/48; 1/49 + 1/50; 1/51 + 1/52; 1/53 + 1/54 ( tổng 15 số hạng 1/90 vế trái < tổng 10 số hạng từ 1/45 đến 1/54 vế phải)
Vậy : 1/90 + 1/90 + ...(44 số hạng vế trái) < 1/30 + 1/31 + .....1/54 (24 số hạng đầu tiên của vế phải)
Và 1/90 + 1/90 + .(31 số hạng còn lại của vế trái ) < 1/5 + 1/56 + ...+ 1/90 (36 sô hạng còn lại của vế phải)
Kết luận : vế trái < vế phải
Điền dấu ><= vào chỗ chấm: 1/31+1/32+1/33+...+1/89+1/90 và 2/3
Điền dấu >, <, =
1/31 + 1/32 + 1/33 +.... + 1/89 + 1/90 2/3
(phần mình bỏ trống màu trắng là chỗ điền dấu)
1/31+1/32+...+1/89+1/90 bé hay lớn hay bằng 5/6
So sánh 1/31 +' 1/32 + 1/33 + ... + 1/89 + 1/90 với 5/6
\(B=\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{60}>\dfrac{1}{60}+\dfrac{1}{60}+...+\dfrac{1}{60}=\dfrac{30}{60}=\dfrac{1}{2}\)
\(C=\dfrac{1}{61}+\dfrac{1}{62}+...+\dfrac{1}{90}>\dfrac{1}{90}+\dfrac{1}{90}+...+\dfrac{1}{90}=\dfrac{30}{90}=\dfrac{1}{3}\)
Do đó: \(B+C>\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)(đpcm)
A = 1/31 + 1/32 + 1/33 + ... + 1/89 + 1/90 ..... 5/6
A = 5/6 = 1/2 + 1/3
Ta đặt : B = 1/31 + 1/32 + 1/33 + ... + 1/60 ( 30 phân số )
C = 1/61 + 1/62 + 1/63 + .... + 1/90 ( 30 phân số )
Ta có : B = 1/31 + 1/32 + 1/33 + ... + 1/60 > 1/60 + 1/60 + 1/60 + ... + 1/60 = 30 x 1/60 = 1/2
C = 1/61 + 1/62 + 1/63 + ... + 190 > 1/90 + 1/90 + 1/90 + .... + 1/90 = 30 x 1/90 = 1/3
Vì A = B + C > 1/2 + 1/3 = 5/6 nên 1/31 + 1/32 + 1/33 + .. + 1/89 + 1/90 > 5/6
A=1/31+1/32+....+1/89+1/90>5/6 -vì dãy tổng A gồm 60 phân số mà phân số 1/60 nằm ở giữa (số tt 30)
xét :1/59+1/61>2/60 (1/59+1/61=(59+61)/59*61=120/(60^2-1)>12...
tương tự:1/58+1/62>2/60
:1/57+1/63 >2/60 cứ như vậy có tới 29 cặp lẻ 1/90 và số 1/60 mà ta dùng so sánh
do đó khi cộng vào ta được A.>59/60>50/60=5/6 đpcm