Cho a, b, c là số đo 3 cạnh của tam giác
Chứng minh rằng 1=< a/(b+c) + b/(c+a) + a/(a+b) =< 2
1. Cho \(\left\{{}\begin{matrix}x,y,z>0\\x+y+z=\dfrac{3}{4}\end{matrix}\right.\)
Tìm min \(C=\sqrt[3]{x+3y}+\sqrt[3]{y+3z}+\sqrt[3]{z+3x}\)
2. Với a,b,c là đô dài 3 cạnh 1 tam giác
Chứng minh: \(\sqrt[3]{a+b-c}+\sqrt[3]{b+c-a}+\sqrt[3]{c+a-b}\le\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)
Cho a, b, c là số đo 3 cạnh của tam giác vuông với c là số đo cạnh huyền. Chứng minh rằng: a^(2n)+b^(2n)<=c^(2n) với n là số tự nhiên lớn hơn 0.
Cho a, b, c là số đo 3 cạnh của một tam giác. Chứng minh rằng: \(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)
Cho a,b,c là số đo 3 cạnh của 1 tam giác vuông với c là số đo cạnh huyền.
Chứng minh rằng: \(a^{2n}+b^{2n}\le c^{2n};n\) là số tự nhiên lớn hơn 0
Cho a,b,c là số đo 3 cạnh của 1 tam giác với c là số đo cạnh huyền.
Chứng minh rằng : \(a^{2n}+b^{2n}\le c^{2n}\) với n là số tự nhiên lớn hơn 0
+) Với n = 1 thì \(a^2+b^2=c^2\)(đúng với định lý Pythagoras)
+) Với n = 2 thì \(a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2=c^4-2a^2b^2< c^4\)(đúng với n = 2)
Giả sử \(a^{2n}+b^{2n}\le c^{2n}\)
Ta sẽ chứng minh điều đó đúng với n + 1.
Ta có: \(a^{2n+2}+b^{2n+2}=\left(a^{2n}+b^{2n}\right)\left(a^2+b^2\right)-a^2.b^{2n}-a^{2n}.b^2\)
\(\le c^{2n}.c^2-a^2.b^{2n}-a^{2n}.b^2=c^{2n+2}-a^2.b^{2n}-a^{2n}.b^2< c^{2n+2}\)
Vậy BĐT đúng với n + 1
Vậy bđt đúng với mọi n > 0
Vậy \(a^{2n}+b^{2n}\le c^{2n}\)(đpcm)
cho a, b, c là số đo 3 cạnh của tam giác vuông với c là số đo cạnh huyền. Chứng minh rằng:
a2n + b2n >= c2n
Cho a,b,c là số đo 3 cạnh tam giác:
Chứng minh rằng: \(1< \dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\)
Mình xem lại đúng là hai đề có khác tuy nhiên bản chất giống nhau kiểu như thay số khác thôi
Biểu thức cần c/m bài trước: \(B_{cu}=\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\)
Biểu thức cần C/m bài này: \(A=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
ý bạn cái mẫu không giống nhau:
Không chứng minh lại cái này nữa \(\dfrac{x}{y}< \dfrac{x+p}{x+p}\forall x,y,p>0;\left(x< y\right)\)(*) có thể quay lại câu trước xem cách chứng minh (*). ok
\(\left\{{}\begin{matrix}\dfrac{a}{b+c}< \dfrac{a+a}{a+b+c}\\\dfrac{b}{c+a}< \dfrac{b+b}{a+b+c}\\\dfrac{c}{c+a}< \dfrac{c+c}{a+b+c}\end{matrix}\right.\) công hết lai
\(VT=A< VP=\dfrac{2a+2b+2c}{a+b+c}=2\)
Bạn thấy hai bài giống nhau chưa
OK
cái này có quá nhiều rồi bạn bấm vào cái nút góc trên tay phải hình mũi tên quay xuống thấy --> tha hồ lựa chọn
đừng đăng câu khi quá nhiều.
đấy là ý kiến riêng mình thấy vậy
và khuyên các bạn giải bài gặp bài lập lại nhiều quá đừng giải nữa => nhàm chán chẳng có hứng gì
Cho a,b,c là số đo ba cạnh của tam giác
Chứng minh rằng \(1< \dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\)
\(\left\{{}\begin{matrix}\dfrac{a}{b+c}>\dfrac{a}{a+b+c}\\\dfrac{b}{c+a}>\dfrac{b}{a+b+c}\\\dfrac{c}{a+b}>\dfrac{c}{a+b+c}\end{matrix}\right.\Rightarrow\dfrac{a}{b+c}+\dfrac{c}{c+a}+\dfrac{c}{a+b}>\dfrac{a+b+c}{a+b+c}=1\)
\(\left\{{}\begin{matrix}\dfrac{a}{b+c}< \dfrac{2a}{a+b+c}\\\dfrac{b}{c+a}< \dfrac{2b}{a+b+c}\\\dfrac{c}{a+b}< \dfrac{2c}{a+b+c}\end{matrix}\right.\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< \dfrac{2a+2b+2c}{a+b+c}=2\)
Từ trên \(\Rightarrowđpcm\)
cho a,b,c là số đo ba cạnh của 1 tam giác . cmr a^3+b^3+c^3+3abc ≥ a^2(b+c) + b^2(c+a) +c^2(a+b)
Lời giải:
BĐT $\Leftrightarrow abc\geq (a+b-c)(b+c-a)(c+a-b)(*)$
Áp dụng BĐT AM-GM:
$(a+b-c)(b+c-a)\leq \left(\frac{a+b-c+b+c-a}{2}\right)^2=b^2$
$(b+c-a)(c+a-b)\leq \left(\frac{b+c-a+c+a-b}{2}\right)^2=c^2$
$(a+b-c)(a+c-b)\leq \left(\frac{a+b-c+a+c-b}{2}\right)^2=a^2$
Nhân theo vế 3 BĐT trên:
$[(a+b-c)(b+c-a)(c+a-b)]^2\geq (abc)^2$
$\Rightarrow abc\geq (a+b-c)(b+c-a)(c+a-b)$ (BĐT $(*)$ được cm)
Ta có đpcm.