Tìm đa thức có bậc có hệ số nguyên nhận x=\(\sqrt{2}+\sqrt[3]{2}\) là nghiệm
Tìm 1 đa thức có hệ số nguyên bậc 7 nhận \(x=\sqrt[7]{\dfrac{2}{5}}+\sqrt[7]{\dfrac{5}{2}}\) là nghiệm
Lập 1 đa thức bậc 2 có các hệ số nguyên nhận \(3\sqrt{3}-2\) là nghiệm
\(x=3\sqrt{3}-2\Leftrightarrow x+2=3\sqrt{3}\Rightarrow\left(x+2\right)^2=\left(3\sqrt{3}\right)^2\)
\(\Leftrightarrow x^2+4x+4=27\Leftrightarrow x^2+4x-23=0\)
Vậy \(f\left(x\right)=x^2+4x-23\)là một đa thức thỏa mãn ycbt.
Tìm một đa thức có dạng: \(ax^4+bx^3+cx^2+dx+e\) \(\left(a\ne0\right)\) và các hệ số nguyên và nhận nghiệm là \(x=1+\sqrt{2}-\sqrt{3}\)
Tìm đa thức với hệ số nguyên P(x) có bậc nhỏ nhất có một nghiệm :
x0 =\(\sqrt[3]{2}+\sqrt{2}\)
Đa thức trên có nghiệm hữu tỉ không? tại sao?
Bậc nhỏ nhất của đa thức \(P\left(x\right)\)là \(3.2=6\).
\(x=\sqrt[3]{2}+\sqrt{2}\)
\(\Leftrightarrow x-\sqrt{2}=\sqrt[3]{2}\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)^3=2\)
\(\Leftrightarrow x^3-3\sqrt{2}x^2+6x-2\sqrt{2}=2\)
\(\Leftrightarrow x^3+6x-2=3\sqrt{2}x^2+2\sqrt{2}\)
\(\Leftrightarrow\left(x^3+6x-2\right)^2=2\left(3x^2+2\right)^2\)
\(\Leftrightarrow x^6+36x^2+4+12x^4-24x-4x^3=18x^4+24x^2+8\)
\(\Leftrightarrow x^6-6x^4-4x^3+12x^2-24x-4=0\)
\(P\left(x\right)=x^6-6x^4-4x^3+12x^2-24x-4\)
Nếu đa thức trên có nghiệm hữu tỉ thì nghiệm có có dạng \(\frac{p}{q}\)với \(p\)là ước của \(-4\)và \(q\)là ước của \(1\).
Nên có thể là các giá trị \(\left\{-4,-2,-1,1,2,4\right\}\).
Ta thử các giá trị trên đều thấy không phải là nghiệm của \(P\left(x\right)\).
Do đó đa thức đó không có nghiệm hữu tỉ.
Tìm đa thức với hệ số nguyên nhận x= \(\sqrt{2}\)+ \(\sqrt[2]{3}\)là nghiệm
Ta có:
\(x=\sqrt{2}+\sqrt{3}\)
nên \(x^2=\left(\sqrt{2}+\sqrt{3}\right)^2\)
\(\Leftrightarrow\) \(x^2=5+2\sqrt{6}\)
\(\Rightarrow\) \(\left(x^2-5\right)^2=\left(2\sqrt{6}\right)^2\)
\(\Leftrightarrow\) \(x^4-10x^2+25=24\)
hay \(x^4-10x^2+1=0\)
Đa thức \(a^4-10a^2+1=0\) là đa thức hệ số nguyên (bậc dương nhỏ nhất) nhận số \(x\) làm nghiệm
tìm đa thức với hệ số nguyên nhận \(\sqrt{2}+\sqrt[3]{2}\)
là nghiệm
tìm 1 đa thức có hệ số nghiệm bậc 7 nhận x=\(\sqrt[7]{\frac{2}{3}}+\sqrt[7]{\frac{5}{2}}\) là nghiệm
Cho a=\(\frac{\sqrt[3]{7+5\sqrt{2}}}{\sqrt{4+2\sqrt{3}}-\sqrt{3}}\)
a) xác định đa thức với hệ số nguyên bậc dương nhỏ nhất nhận a làm nghiệm
b) giả sử đa thức f(x) =\(3x^6-4x^5-7x^4+6x^3+6x^2+x-53\sqrt{2}\)tính f(a)
Giúp mình với ! Cần gấp lắm!!!
cho f(x) là đa thức bậc 3 hệ số nguyên. Chứng minh: nếu \(3-\sqrt{2}\) là nghiệm thì \(3+\sqrt{2}\) cũng là nghiệm