Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Bích Thủy
Xem chi tiết
Tran
Xem chi tiết
Trần Thị Thanh Thảo
Xem chi tiết
Tứ Diệp Thảo My My
10 tháng 7 2017 lúc 12:28

hình đâu

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 6 2018 lúc 6:33

Ta chứng minh BĐT

( a + b + c ) ( 1 a + 1 b + 1 c ) ≥ 9 ( * ) ( * ) < = > 3 + ( a b + b a ) + ( b c + c b ) + ( c a + a c ) ≥ 9

Áp dụng BĐT Cô – si cho hai số dương ta có:

a b + b a ≥ 2 b c + c b ≥ 2 c a + a c ≥ 2 =>(*) đúng

 

= > 9 a + b + c ≤ 1 a + 1 b + 1 c ≤ 3 = > a + b + c ≥ 3

Trở lại bài toán: Áp dụng BĐT Cô si cho hai số dương ta có  1 + b 2 ≥ 2 b

Ta có: a 1 + b 2 = a − a b 2 1 + b 2 ≥ a − a b 2 2 b = a − a b 2 ( 1 )

 

Tương tự ta có: 

b 1 + c 2 ≥ b − b c 2 ( 2 ) c 1 + a 2 ≥ c − c a 2 ( 3 )

 

Cộng từng vế của (1), (2) và (3) ta có:

a 1 + b 2 + b 1 + c 2 + c 1 + a 2 ≥ a + b + c − 1 2 ( a b + b c + c a ) = > a 1 + b 2 + b 1 + c 2 + c 1 + a 2 + 1 2 ( a b + b c + c a ) ≥ a + b + c ≥ 3

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 2 2018 lúc 3:55

Ta có A 1 ^ + A 2 ^ + B 2 ^ = a ° ⇒ B 2 ^ = a ° − 180 °     (1)

B 1 ^ + B 2 ^ + A 1 ^ = b ° ⇒ A 1 ^ = b ° − 180 °               (2)

Từ (1) và (2), suy ra: B 2 ^ + A 1 ^ = a ° + b ° − 360 ° = 540 ° − 360 ° = 180 ° .

Mặt khác A 2 ^ + A 1 ^ = 180 °  (kề bù) nên B 2 ^ + A 1 ^ = A 2 ^ + A 1 ^ = 180 ° .

Suy ra B 2 ^ = A 2 ^ . Do đó a // b vì có cặp góc đồng vị bằng nhau

huy nguyễn
Xem chi tiết
Huỳnh Quang Sang
26 tháng 8 2019 lúc 16:44

a A 3 2 4 1 c b B 3 2 4 1

a, \(\widehat{B}_1=\widehat{B_3}\) đối đỉnh

\(\widehat{A}_1=\widehat{B}_1\) theo bài đầu 

Do đó \(\widehat{A_1}=\widehat{B_3}\)

Mặt khác,ta có \(\widehat{A_1}+\widehat{A_4}=180^0\) hai góc kề bù

=> \(\widehat{A_4}=180^0-\widehat{A_1}\)                                  \((1)\)

Và \(\widehat{B_2}+\widehat{B_3}=180^0\) hai góc kề bù

=> \(\widehat{B_2}=180^0-\widehat{B_3}\)                                 \((2)\)

\(\widehat{A_1}=\widehat{B_3}\)                                                      \((3)\)

Từ 1,2,3 ta có : \(\widehat{A_4}=\widehat{B_2}\)

b, \(\widehat{A_2}=\widehat{A_4}\) đối đỉnh

\(\widehat{A_4}=\widehat{B_2}\) theo câu a

Do đó : \(\widehat{A_2}=\widehat{B_2};\widehat{A_1}=\widehat{A_3}\) đối đỉnh

\(\widehat{A_1}=\widehat{B_3}\) câu a

Do đó \(\widehat{A_3}=\widehat{B_3}\). Mặt khác \(\widehat{B_2}=\widehat{B_4}\) hai góc đối đỉnh

\(\widehat{A_4}=\widehat{B_2}\) câu a . Do đó \(\widehat{A_4}=\widehat{B_4}\)

c, \(\widehat{B_1}+\widehat{B_2}=180^0\) hai góc kề bù

\(\widehat{A_1}=\widehat{B_1}\) theo đầu bài

Do đó \(\widehat{A_1}+\widehat{B_2}=180^0\)

Mặt khác \(\widehat{B_2}+\widehat{B_3}=180^0\) kề bù

\(\widehat{A_4}=\widehat{B_2}\) theo câu a . Do đó \(\widehat{A_4}+\widehat{B_3}=180^0\)

Nguyễn Hoàng Long
26 tháng 8 2019 lúc 16:41

mik chịu thui xin lỗi bạn

Cao Trà Mi
Xem chi tiết
sakura
27 tháng 12 2015 lúc 17:01

xin loi ban minh cung muon giai giup ban lam nhung minh moi hoc lop 5 thoi

Mimi
27 tháng 12 2015 lúc 17:06

mình giống bạn sakura - sorry  nha

Lê Minh Toàn
8 tháng 1 2016 lúc 19:21

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 10 2017 lúc 8:02

Ÿ Tìm cách giải

Trong hình vẽ đã có những cặp góc đồng vị, cặp góc trong cùng phía. Từ điều kiện trong đề bài, ta có thể suy ra được tổng của hai góc trong cùng phía bù nhau, từ đó suy ra được hai đường thẳng song song.

Ÿ Trình bày lời giải

Ta có A 2 ^ − A 1 ^ = B 2 ^ − B 1 ^ , suy ra A 2 ^ + B 1 ^ = B 2 ^ + A 1 ^ .

Mặt khác A 2 ^ + B 1 ^ + B 2 ^ + A 1 ^ = 360 °  nên A 2 ^ + B 1 ^ = 180 ° .

Suy ra a // b vì có cặp góc trong cùng phía bù nhau

Uzumaki Naruto
Xem chi tiết