Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
tran thi huong

Những câu hỏi liên quan
giang phan
Xem chi tiết
Khai va Thien Vo yeu cua
Xem chi tiết
Triệu Nguyễn Gia Huy
Xem chi tiết
Dich Duong Thien Ty
Xem chi tiết
Trần Thị Loan
22 tháng 9 2015 lúc 11:05

\(\frac{a}{b}=\frac{a\left(b+2012\right)}{b\left(b+2012\right)}=\frac{ab+2012a}{b\left(b+2012\right)}\)

\(\frac{a+2012}{b+2012}=\frac{\left(a+2012\right)b}{b\left(b+2012\right)}=\frac{ab+2012b}{b\left(b+2012\right)}\)

Vì b > 0 nên b(b + 2012) > 0 

a < 0 ; b > 0 nên a < b => 2012a < 2012b => ab + 2012a < ab + 2012b => \(\frac{ab+2012a}{b\left(b+2012\right)}

Nguyễn Minh Đức
Xem chi tiết
Hương Trần Diệu
Xem chi tiết
Phạm Hoàng Linh
Xem chi tiết
ILoveMath
4 tháng 3 2022 lúc 14:25

\(\left|2x-2011\right|+\left(3y+2012\right)^{2012}=0\)

Vì \(\left|2x-2011\right|\ge0,\left(3y+2012\right)^{2012}\ge0\)

\(\Rightarrow\left|2x-2011\right|+\left(3y+2012\right)^{2012}\ge0\)

Mà \(\left|2x-2011\right|+\left(3y+2012\right)^{2012}=0\)

\(\Rightarrow\left\{{}\begin{matrix}2x-2011=0\\3y+2012=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{2011}{2}\\y=-\dfrac{2012}{3}\end{matrix}\right.\)

Nguyễn Hoài Đức CTVVIP
Xem chi tiết
Son Dao Van
Xem chi tiết
 ๖ۣۜFunny-Ngốkツ
23 tháng 8 2018 lúc 13:41

\(x\left(x-2012\right)+2013x-2012\cdot2013=0\)

\(x\left(x-2012\right)+2013\left(x-2012\right)=0\)

\(\left(x+2013\right)\left(x-2012\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2013=0\\x-2012=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-2013\\x=2012\end{cases}}\)

Vậy ....

Nguyễn Thị Huyền Diệp
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 2 2022 lúc 17:47

\(a^{2012}+b^{2012}+c^{2012}\ge3\sqrt[3]{\left(abc\right)^{2012}}=3\)

\(\Rightarrow\dfrac{1}{a^{2012}+b^{2012}+c^{2012}}\le\dfrac{1}{3}\)

\(\Rightarrow-\dfrac{1}{a^{2012}+b^{2012}+c^{2012}}\ge-\dfrac{1}{3}\)

Lại có:

\(a^{2013}+a^{2013}+...+a^{2013}\left(\text{2012 số hạng}\right)+1\ge2013\sqrt[2013]{\left(a^{2013}\right)^{2012}}=2013.a^{2012}\)

\(\Rightarrow2012.a^{2013}+1\ge2013.a^{2012}\)

Tương tự: \(2012.b^{2013}+1\ge2013.b^{2012}\) ; \(2012.c^{2013}+1\ge2013.c^{2012}\)

Cộng vế với vế:

\(\Rightarrow a^{2013}+b^{2013}+c^{2013}\ge\dfrac{2013\left(a^{2012}+b^{2012}+c^{2012}\right)-3}{2012}\)

\(\Rightarrow A\ge\dfrac{2013\left(a^{2012}+b^{2012}+c^{2012}\right)-3}{2012\left(a^{2012}+b^{2012}+c^{2012}\right)}=\dfrac{2013}{2012}-\dfrac{3}{2012}.\dfrac{1}{a^{2012}+b^{2012}+c^{2012}}\ge\dfrac{2013}{2012}-\dfrac{3}{2012}.\dfrac{1}{3}=1\)

\(A_{min}=1\) khi \(a=b=c=1\)