\(2012^0\)
Cho x>0, y>0. Tìm max, min của F= (x^2012+y^2012)/(x+y)^2012
cho a,b thuoc Z,a<0,b>0
so sah 2 so huu ti a/b va a+2012/b+2012 ta dc a/b.............a+2012/b+2012
Cho a,b thuộc Z,a<0 và b>0
So sánh 2 số hữu tỉ a/b và a+2012/b+2012 ta được a/b ........a+2012/b+2012
cho a,b thuộc Z và a<0 ; b>0
so sánh 2 số hữu tỉ a/b va a+2012/b+2012 ta dc : a/b........a+2012/b+2012
\(\frac{a}{b}=\frac{a\left(b+2012\right)}{b\left(b+2012\right)}=\frac{ab+2012a}{b\left(b+2012\right)}\)
\(\frac{a+2012}{b+2012}=\frac{\left(a+2012\right)b}{b\left(b+2012\right)}=\frac{ab+2012b}{b\left(b+2012\right)}\)
Vì b > 0 nên b(b + 2012) > 0
a < 0 ; b > 0 nên a < b => 2012a < 2012b => ab + 2012a < ab + 2012b => \(\frac{ab+2012a}{b\left(b+2012\right)}
Cho a = 2012^2012^0 ( \(^{2012^{2012^0}}\) ) .Khi đó a bằng ?
Chú ý : hình trong ngoặc mih viết lại thui
mọi người ơi giúp mk vs
cho tỉ lệ thức a/b=c/d (b,d # 0). CMR (a-b)^2012/(c-d)^2012=a^2012+b^2012/c^2012+d^2012
tìm x y thỏa mãn : /2x-2011/ + (3y +2012)^2012 =0
\(\left|2x-2011\right|+\left(3y+2012\right)^{2012}=0\)
Vì \(\left|2x-2011\right|\ge0,\left(3y+2012\right)^{2012}\ge0\)
\(\Rightarrow\left|2x-2011\right|+\left(3y+2012\right)^{2012}\ge0\)
Mà \(\left|2x-2011\right|+\left(3y+2012\right)^{2012}=0\)
\(\Rightarrow\left\{{}\begin{matrix}2x-2011=0\\3y+2012=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{2011}{2}\\y=-\dfrac{2012}{3}\end{matrix}\right.\)
cho x 0,y 0, x y 2012. a, tim GTLN cua A 2x 2 8xy 2y 2 x 2 2xy y 2 b, tim GTNN cua B 1 2012 x 2 1 2012 y 2
x×(x-2012)+2013×x-2012×2013=0
\(x\left(x-2012\right)+2013x-2012\cdot2013=0\)
\(x\left(x-2012\right)+2013\left(x-2012\right)=0\)
\(\left(x+2013\right)\left(x-2012\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2013=0\\x-2012=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-2013\\x=2012\end{cases}}\)
Vậy ....
Cho a,b,c >0 thỏa mãn abc=1. Tìm min A=\(\dfrac{a^{2013}+b^{2013}+c^{2013}}{a^{2012}+b^{2012}+c^{2012}}\)
\(a^{2012}+b^{2012}+c^{2012}\ge3\sqrt[3]{\left(abc\right)^{2012}}=3\)
\(\Rightarrow\dfrac{1}{a^{2012}+b^{2012}+c^{2012}}\le\dfrac{1}{3}\)
\(\Rightarrow-\dfrac{1}{a^{2012}+b^{2012}+c^{2012}}\ge-\dfrac{1}{3}\)
Lại có:
\(a^{2013}+a^{2013}+...+a^{2013}\left(\text{2012 số hạng}\right)+1\ge2013\sqrt[2013]{\left(a^{2013}\right)^{2012}}=2013.a^{2012}\)
\(\Rightarrow2012.a^{2013}+1\ge2013.a^{2012}\)
Tương tự: \(2012.b^{2013}+1\ge2013.b^{2012}\) ; \(2012.c^{2013}+1\ge2013.c^{2012}\)
Cộng vế với vế:
\(\Rightarrow a^{2013}+b^{2013}+c^{2013}\ge\dfrac{2013\left(a^{2012}+b^{2012}+c^{2012}\right)-3}{2012}\)
\(\Rightarrow A\ge\dfrac{2013\left(a^{2012}+b^{2012}+c^{2012}\right)-3}{2012\left(a^{2012}+b^{2012}+c^{2012}\right)}=\dfrac{2013}{2012}-\dfrac{3}{2012}.\dfrac{1}{a^{2012}+b^{2012}+c^{2012}}\ge\dfrac{2013}{2012}-\dfrac{3}{2012}.\dfrac{1}{3}=1\)
\(A_{min}=1\) khi \(a=b=c=1\)