Tính
\(\frac{x-12}{6x-36}-\frac{6}{x^2-6x}\)
\(A=\left(\frac{6x+1}{x^2-6x}+\frac{6x-1}{x^2+6x}\right)\times\frac{x^2-36}{12x^2+12}\)
Rút gọn nha các cậu
\(A=\left(\frac{6x+1}{x^2-6x}+\frac{6x-1}{x^2+6x}\right)\times\frac{x^2-36}{12x^2+12}\)
\(A=\left[\frac{6x+1}{x\left(x-6\right)}+\frac{6x-1}{x\left(x+6\right)}\right]\times\frac{\left(x+6\right)\left(x-6\right)}{12\left(x^2+1\right)}\)
\(A=\frac{6x^2+36x+x+6+6x^2-36x-x+6}{x}\times\frac{1}{12\left(x^2+1\right)}\)
\(A=\frac{12\left(x^2+1\right)}{x}\times\frac{1}{12\left(x^2+1\right)}=\frac{1}{x}\)
Thực hiện phép cộng: \(\frac{6}{x^2-6x}+\frac{x-12}{6x-36}\)
Cho biểu thức \(A=\left(\frac{6x+1}{x^2-6}+\frac{6x-1}{x^2+6x}\right)\frac{x^2-36}{12x^2+12}\left(x\ne0;x\ne\pm6\right)\)
1, Rút gọn biểu thức A
2, Tính giá trị biểu thức A với \(x=\frac{1}{\sqrt{9+4\sqrt{5}}}\)
\(1,ĐK:x\ne0;x\ne\pm6\)
\(A=\left[\frac{6x+1}{x\left(x-6\right)}+\frac{6x-1}{x\left(x+6\right)}\right].\frac{\left(x+6\right)\left(x-6\right)}{12\left(x^2+1\right)}\)
\(=\frac{6x^2+36x+x+6+6x^2-36x-x+6}{x}.\frac{1}{12\left(x^2+1\right)}\)
\(=\frac{12\left(x^2+1\right)}{x}.\frac{1}{12\left(x^2+1\right)}=\frac{1}{x}\)
\(2,A=\frac{1}{x}=\frac{1}{\frac{1}{\sqrt{9+4\sqrt{5}}}}=\sqrt{9+4\sqrt{5}}\)
Cho tam giác ABC vuông tại B có góc B1=B2 ; Â=60o, kẻ BH vuông góc với AC (H thuộc AC). Qua B kẻ đường thẳng d song song với AC.
a) Tính góc ABH.
b) Chứng minh đường thẳng d vuông góc với BH.
Rút gọn : \(\left(\frac{x}{x^2-36}+\frac{6-x}{x^2+6x}\right):\frac{2x-6}{x^2+6x}+\frac{x}{6-x}\)
\(\left(\frac{x}{x^2-36}+\frac{6-x}{x^2+6x}\right):\frac{2x-6}{x^2+6x}+\frac{x}{6-x}\)
đkxđ: \(x\ne0;x\ne\pm6\)
MTC=x(x+6)(x-6)
\(=\left[\frac{x}{\left(x+6\right)\left(x-6\right)}+\frac{6-x}{x\left(x+6\right)}\right]\cdot\frac{x\left(x+6\right)}{x\left(x-3\right)}-\frac{x}{x-6}\)
\(=\left[\frac{x^2}{x\left(x^2-36\right)}-\frac{\left(x-6\right)^2}{x\left(x^2-36\right)}\right]\cdot\frac{x\left(x+6\right)}{x\left(x-3\right)}-\frac{x}{x-6}\)
\(=\frac{12\left(x-3\right)}{x\left(x+6\right)\left(x-6\right)}\cdot\frac{x\left(x+6\right)}{x\left(x-3\right)}-\frac{x}{x-6}\)
\(=\frac{12}{x\left(x-6\right)}-\frac{x^2}{x\left(x-6\right)}\)
\(=\frac{12-x^2}{x\left(x-6\right)}\)
.....................
Rút gọn : A = \(\left(\frac{x}{x^2-36}-\frac{x-6}{x^2+6x}\right)\div\frac{2x-6}{x^2+6x}+\frac{x}{6-x}\)
A = \(\left(\frac{x}{x^2-36}-\frac{x-6}{x^2+6x}\right):\frac{2x-6}{x^2+6x}+\frac{x}{6-x}\)
= \(\left[\frac{x}{\left(x-6\right)\left(x+6\right)}-\frac{x-6}{x\left(x+6\right)}\right]:\frac{2\left(x-3\right)}{x\left(x+6\right)}-\frac{x}{x-6}\)
= \(\left[\frac{x^2}{x\left(x-6\right)\left(x+6\right)}-\frac{\left(x-6\right)^2}{x\left(x-6\right)\left(x+6\right)}\right]:\frac{2\left(x-3\right)}{x\left(x+6\right)}-\frac{x}{x-6}\)
= \(\frac{x^2-\left(x-6\right)^2}{x\left(x-6\right)\left(x+6\right)}:\frac{2\left(x-3\right)}{x\left(x+6\right)}-\frac{x}{x-6}\)
= \(\frac{\left(x-x+6\right)\left(x+x-6\right)}{x\left(x-6\right)\left(x+6\right)}:\frac{2\left(x-3\right)}{x\left(x+6\right)}-\frac{x}{x-6}\)
=
= \(\frac{x\left(2x-6\right)}{x\left(x-6\right)\left(x+6\right)}:\frac{2x-6}{x\left(x+6\right)}-\frac{x}{x-6}\)
= \(\frac{2x-6}{\left(x-6\right)\left(x+6\right)}.\frac{x\left(x+6\right)}{2x-6}\) \(-\frac{x}{x-6}\)
= \(\frac{x}{x-6}-\frac{x}{x-6}\)
= 0
Cho A = \(\left(\frac{x}{x^2-36}-\frac{x-6}{x^2+6x}\right).\frac{2x-6}{x^2+6x}+\frac{x}{6-x}\)
a, tìm điều kiện xác định. Rút gọn A
b, Tìm A để : A=-1
c, Tính giá trị của A khi x=1
\(a)A=(\frac{x}{(x+6)(x+6)}-\frac{x-6}{x(x+6)})\cdot\frac{x(x+6)}{2x-6}+\frac{x}{x-6}\)
\(A=\frac{x^2-(x-6)^2}{x(x+6)(x-6)}\cdot\frac{x(x+6)}{2x-6}-\frac{x}{x-6}=\frac{(x-x+6)(x+x-6)}{(x-6)(2x-6)}-\frac{x}{x-6}\)
\(=\frac{6(2x-6)}{(x-6)(2x-6)}-\frac{x}{x-6}=\frac{6}{(x-6)}-\frac{x}{x-6}\cdot\frac{6-x}{x-6}=-1\)
\(b)\text{A luôn = -1 với mọi x}\)
\(\left(\frac{x}{x^2-36}-\frac{x-6}{x^2+6x}\right):\frac{2x-6}{x^2+6x}+\frac{6}{6-x}\)
hãy rút gọn biểu thức trên
giúp mk vs . :'(
= ( x/(x-6)(x+6) - x-6/x(x+6) ) : 2x-6/x2 + 6x + 6/6-x
=( x2/x(x+6)(x-6) - (x -6 )(x-6)/x(x+6)(x-6) ) : .....
= (12x -36 / x(x+6)(x-6) : 2x-6/ x2 + 6x )+ 6/6-x
=6/x-6 + 6/6-x
= 6-6/ x-6
=0/x-6
câu trước mình thiếu 6/6-x
câu trên sai , để mình giải đàng hoàng ra
\(\left(\frac{x}{^{x^2-36}}-\frac{x-6}{x^2+6x}\right):\frac{2x-6}{x^2+6x}+\frac{x}{6-x}\)
chứng minh biểu thức không phụ thuộc vào biến x
Chứng minh rằng
a, \(\left(\frac{x}{x-36}-\frac{x-6}{x^2-6x}\right):\frac{2x-6}{x^2+6x}+\frac{x}{6-x}=-1\)
help meeee !!!