Tìm số tự nhiên n để 3^n + 19 là số chính phương .
Tìm số tự nhiên n để A=3^n+19 là số chính phương
đơn con nhà bà giản
đặt A=a2
xét n=2k
=>32k+19=a2
=>(a-3k)(a+3k)=19
từ đó thì dễ dàng tìm được k;a=>n=...
xét n=2k+1
=>3n+19=9k.3+19
9 đồng dư với 1(mod 4)
=>9k đồng dư với 1(mod 4)
=>9k.3 đồng dư với 3(mod 4)
=>A đồng dư với 2(mod 4)
mà A là số chính phương=>A chia 4 dư 0;1
=>A không tồn tại khi n=2k+1
KL...
Bạn ko nói rõ lớp mấy để đưa ra cách giải phù hợp.
1) Gọi chữ số hàng đơn vị là x (0 < x <9) => chữ số hàng chục là 3x
Số ban đầu có dạng 10.3x + x = 31x
Sau khi đổi chỗ số mới có dạng 10.x + 3x = 13x
Vì số mới nhỏ hơn số đã cho 18 nên có pt 31x - 13x = 18 <=> 18x = 18 => x = 1 (TMĐK)
Suy ra chữ số hàng chục là 3. Vậy số cần tìm là 31.
2) Tóm tắt thôi nhé.
Chữ số hàng chục là a, hàng đơn vị là b. => Số có dạng 10a + b và a+ b = 10
Số mới sau khi đổi chỗ là 10b + a
Giải hệ 2 pt: a + b = 10 và (10a + b) - (10b + a) = 36
được a = 7; b = 3. Vậy số cần tìm là 73.
3) Gọi a là số tự nhiên sau khi đã xóa đi 5. Số ban đầu là 10a + 5
xóa chữ số 5 thì số ấy giảm đi 1787 đơn vị nên ta có pt : 10a + 5 - 1787 = a
=> 9a = 1782 => a = 198 => Số ban đầu là 1985
Bạn ko nói rõ lớp mấy để đưa ra cách giải phù hợp.
1) Gọi chữ số hàng đơn vị là x (0 < x <9) => chữ số hàng chục là 3x
Số ban đầu có dạng 10.3x + x = 31x
Sau khi đổi chỗ số mới có dạng 10.x + 3x = 13x
Vì số mới nhỏ hơn số đã cho 18 nên có pt 31x - 13x = 18 <=> 18x = 18 => x = 1 (TMĐK)
Suy ra chữ số hàng chục là 3. Vậy số cần tìm là 31.
2) Tóm tắt thôi nhé.
Chữ số hàng chục là a, hàng đơn vị là b. => Số có dạng 10a + b và a+ b = 10
Số mới sau khi đổi chỗ là 10b + a
Giải hệ 2 pt: a + b = 10 và (10a + b) - (10b + a) = 36
được a = 7; b = 3. Vậy số cần tìm là 73.
3) Gọi a là số tự nhiên sau khi đã xóa đi 5. Số ban đầu là 10a + 5
xóa chữ số 5 thì số ấy giảm đi 1787 đơn vị nên ta có pt : 10a + 5 - 1787 = a
=> 9a = 1782 => a = 198 => Số ban đầu là 1985
Tìm số tự nhiên n để số 3n+19 là số chính phương.
a. tìm a là số tự nhiên để 17a+8 là số chính phương
b. tìm a là số tự nhiên để 13a+a là số chính phương
c. tìm n là số tự nhiên sao cho 3n+4 là số chính phương
d. tìm n là số tự nhiên sao cho 2n+9 là số chính phương
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
Tìm các số tự nhiên n sao cho n! +14 là số chính phương
Tìm cá số tự nhiên n sao cho n! + 19 là số chính phương
Bài 2. Tìm tất cả số tự nhiên n để 3. 5^n + 13 là số chính phương.
Bài 3. Tìm tất cả số tự nhiên n để n! +2024 là số chính phương. Bài 4. Tìm tất cả số chính phương có bốn chữ số, trong đó có a) Một chữ số 0, một chữ số 2, một chữ số 3, một chữ số 4. b) Một chữ số 0, một chữ số 2, một chữ số 4, một chữ số 7.Tìm số tự nhiên n sao cho 3n+19 là số chính phương.
Bài nè không bít có được vào CÂU HỎI HAY của OLM không?
1./ Dễ thấy: \(A=3^n+19\)là 1 số chẵn. Nên để A là số chính phương thì A phải chia hết cho 4.
19 chia 4 dư 3 => \(3^n\)chia 4 dư 1 (1)
Nếu n lẻ = 2i + 1 thì: \(3^{2i+1}=3\cdot\left(3^2\right)^i=3\cdot\left(8+1\right)^i\)chia 4 dư 3 trái với khẳng định (1)Vậy n chẵn và có dạng n = 2k.2./ Bài toán trở thành tìm k để: \(A=3^{2k}+19\)là số chính phương.
Viết lại A ở dạng: \(A=\left(3^k\right)^2+19\)
k = 0 => A = 20 không phải là số chính phươngk = 1 => A = 28 không phải là số chính phươngk = 2 => A = 100 là số chính phương 102k >= 3 thì:\(\left(3^k\right)^2< \left(3^k\right)^2+19=A< \left(3^k\right)^2+2\cdot3^k+1=\left(3^k+1\right)^2\)
A kẹp giữa 2 số chính phương liên tiếp 3k và 3k + 1 nên A không phải là số chính phương.
3./ Kết luận, với duy nhất n = 2k = 4 thì 3n + 19 là số chính phương.
Bài 3: Tìm số nguyên n để C=4n^2+n+4 là số chính phương.
Bài 4: Tìm số nguyên n để A=n^2+6n+2 là số chính phương.
Bài 5: Tìm số nguyên n để B=n^2+n+23 là số chính phương.
Bài 6: Tìm số tự nhiên n để M=1!+2!+3!+....+n! là số chính phương.
Bài 7: Tìm số nguyên n để N=n^2022+1 là số chính phương.
Tìm tất cả các số tự nhiên n sao cho 3n + 19 là số chính phương
giả sử 3n+19=a2 (\(a\inℕ\)). dễ thấy a chẵn nên \(a^2\equiv0\)(mod 4)
=> 3n \(\equiv\)1 (mod 4)
Mặt khắc vì 3\(\equiv\)-1 nên \(3^n\equiv\left(-1\right)^n\)(mod 4)
Vậy n là số chẵn hay n=2m (\(m\inℕ\)) Ta có 32m+19=a2 nên \(\left(a-3^m\right)\left(a+3^m\right)=19\Rightarrow\hept{\begin{cases}a-3^m=1\\a+3^m=19\end{cases}\Rightarrow m=2\Rightarrow n=4}\)
Tìm các số tự nhiên n sao cho \(19+3^n\)là số chính phương