So sánh:
2³⁰+3³⁰+4³⁰ và 3×24¹⁰
So sánh: a.2^300 và 3^200 b.2^300 + 3^20 +4^30 và 3 x 24^10
`a)2^{300}=(2^3)^100=8^100`
`3^200=(3^2)^100=9^100`
Vì `9^100>8^100`
`=>2^300<3^200`
`b)3xx24^10`
`=3.(3.8)^10`
`=3^{11}.8^10`
`=3^{11}.2^30`
`2^300=2^{30}.2^{270}`
`=2^{30}.8^{90}`
Vì `3^11<8^90`
`=>3^{11}.2^30<8^{90}.2^30=2^300`
`=>3xx24^{10}<2^300+3^20+4^30`
so sánh 4^222 và 3^333
câu 2 : so sánh 24^15 và 16^11 x 27^5
Nhớ trình Bày cách Làm nha
so sánh: 2^30+3^30+4^30 và 3*24^10
so sánh: 2^30+3^30+4^30 và 3 nhân 24^10
so sánh 4^30 và 3 x 24^10
so sánh B voi2^14 biet B=2x2^2+3x2^3+4x2^4+...+10x2^10
so sánh: $2^{30}+3^{20}+4^{10}$ và $3*24^{10}$
cái gì vậy
bạn mình đoạc ko hiểu
mình cũng chả biết
so sánh 2^300+3^300+4^300 và 729. 24 ^100
\(2^{300}+3^{300}+4^{300}-729.24^{100}=\)
\(=2^{300}+3^{300}+\left(2^2\right)^{300}-3^6.\left(2^3.3\right)^{100}=\)
\(=2^{300}+3^{300}+2^{600}-2^{300}.3^{106}=\)
\(=2^{300}\left(1+2^{300}-3^{106}\right)+3^{300}\)
Ta có
\(2^{300}=\left(2^2\right)^{150}=4^{150}>3^{150}>3^{106}\Rightarrow2^{300}-3^{106}>0\)
\(\Rightarrow2^{300}\left(1+2^{300}-3^{106}\right)+3^{300}>0\)
\(\Rightarrow2^{300}+3^{300}+4^{300}>729.24^{100}\)
So sánh 2^300+3^300+4^300 và 729×24^100
Ta có
\(2^{300}+3^{300}+4^{400}=2^{300}+3^{300}+2^{800}.\)
\(729.24^{100}=3^{106}.2^{300}=2^{300}+3^{105}.2^{300}\)
Ta lại có
\(3^{105}+3^{105}+3^{105}+3^{105}.2^{297}=3^{315}+3^{105}.2^{297}\)
Nên chỉ cần so sánh \(3^{105}.2^{297}\)với \(2^{800}\)là đc , dùng logarist cơ số 2 là xong
Đề bài của mình là 4^300 cơ mà
so sánh 2^300 +3^300+4^400 và 729 .24 ^100
hehe bài này cóphải như vậy hk ku em 2300 +3300 +4400=2300+3300+2800 ,729.24100=3106.2300=2300+3105.2300 chỉ ta lại có 3105+3105+3105+3105.2297=3315+3105.2297 nên chỉ cần cso sánh 3105.2297 với 2800 là ok ,dùng logarist cơ số 2 xuống là ok.