A = (căn 2- căn 1)/2+1 + (căn 3- căn 2)/3+2 +.....+( căn 36- căn 35)/36+35
CMR: A<5/12
Giải các pt sau:
1)x- căn 2x-5=4
2)căn 2x² - 8x +4=x -2
3)căn x²+ x -12=8- x
4)căn x² - 3x -2= căn x -3
5)căn 2x + 1=2 + căn x - 3
6)căn x +2 căn x-1 -căn x - 2 căn x-1=-2
7) căn x-2 +căn x+3 =5
8) căn x² -4x +3 + x² -4x =-1
2: =>2x^2-8x+4=x^2-4x+4 và x>=2
=>x^2-4x=0 và x>=2
=>x=4
3: \(\sqrt{x^2+x-12}=8-x\)
=>x<=8 và x^2+x-12=x^2-16x+64
=>x<=8 và x-12=-16x+64
=>17x=76 và x<=8
=>x=76/17
4: \(\sqrt{x^2-3x-2}=\sqrt{x-3}\)
=>x^2-3x-2=x-3 và x>=3
=>x^2-4x+1=0 và x>=3
=>\(x=2+\sqrt{3}\)
6:
=>\(\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=-2\)
=>\(\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|=-2\)
=>\(\left|\sqrt{x-1}-1\right|=\sqrt{x-1}+1+2=\sqrt{x-1}+3\)
=>1-căn x-1=căn x-1+3 hoặc căn x-1-1=căn x-1+3(loại)
=>-2*căn x-1=2
=>căn x-1=-1(loại)
=>PTVN
1) ĐK: \(x\ge\dfrac{5}{2}\)
pt <=> \(x-4=\sqrt{2x-5}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left(x-4\right)^2=2x-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-8x+16=2x-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-10x+21=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left(x-3\right)\left(x-7\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left[{}\begin{matrix}x=3\left(l\right)\\x=7\left(n\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy, pt có nghiệm duy nhất là x=7
2) ĐK: \(2x^2-8x+4\ge0\)
pt <=> \(\left\{{}\begin{matrix}x\ge2\\2x^2-8x+4=x^2-4x+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x^2-4x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\left(x-4\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\\left[{}\begin{matrix}x=0\left(l\right)\\x=4\left(n\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy, pt có nghiệm duy nhất là x=4
3) ĐK: \(x\ge3\)
pt <=> \(\left\{{}\begin{matrix}x\le8\\x^2+x-12=x^2-16x+64\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le8\\17x=76\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le8\\x=\dfrac{76}{17}\left(n\right)\end{matrix}\right.\)
Vậy, pt có nghiệm duy nhất là \(x=\dfrac{76}{17}\)\(\)
4) ĐK: \(x\ge3\)
pt <=> \(x^2-3x-2=x-3\)
\(\Leftrightarrow x^2-4x+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2+\sqrt{3}\left(n\right)\\x=2-\sqrt{3}\left(l\right)\end{matrix}\right.\)
a) x + 2 căn x - 1(căn cả câu nhá) b) căn x^2 - 2 căn x - x c) -6x + 5 căn x + 1 d) 7 căn x - 6x -2 e) 2a - 5 căn ab + 36 f) x^4 - 4x^3 + 4x^2
a, Căn ( 36x - 36 ) - căn (9x-9) - căn ( 4x-4)= 16 - căn ( x-4)
b, 1/2 căn ( x-1)- 3/2 căn ( 9x-9) + 24 căn ( x-1/64) -17
giup mình vs !
so sánh
A = (1/ căn1 + căn 2 )+(1/căn 2 + căn 3 ) + .......+ (1/ căn 120+ căn 121)
B = (1/ căn 1) +( 1/ căn 2) + ........+(1/ căn 35)
Ta có: \(A=\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{120}+\sqrt{121}}\)
\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{121}-\sqrt{120}\)
\(=\sqrt{121}-1=11-1=10\)
Lại có đánh giá: \(\frac{1}{\sqrt{k}}=\frac{2}{2\sqrt{k}}>\frac{2}{\sqrt{k+1}+\sqrt{k}}\left(k>1\right)\)
\(\frac{1}{\sqrt{k}}>\frac{2\left(\sqrt{k+1}-\sqrt{k}\right)}{k+1-k}=2\left(\sqrt{k+1}-\sqrt{k}\right)\)
SUy ra \(B>1+2\left(\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{36}-\sqrt{35}\right)\)
\(=1+2\left(\sqrt{36}-\sqrt{2}\right)>1+2\left(6-1\right)=10=A\)
Nên B>A
1) Tìm x thuộc Z thỏa mãn
a)Căn x-2 < 3
b)Căn x+5 < 9 - căn 4x+20
Tìm GTNN của
A= Căn x2-6x+9 + căn x2-12x+36
B= x - 4* căn x-3 +10
a, căn 252 - căn 700 + căn 1008 - căn 448
b,căn 6 + căn 10 trên căn 21 + căn 35
c, căn 2 +căn 3 + căn 4 - căn 6 -căn 9 -căn 12 trên căn 2 + căn 3 + căn4
bài 2
a,căn 37 mũ 2 -35 mũ 2
b,căn 65 mũ 2 -63 mũ 2
c,căn 221 mũ 2 - căn 220 mũ 2
d,căn 117 mũ 2 - 108 mũ 2
xl mình k viết được căn cảm ơn đã giúp
Câu 2:
a: \(=\sqrt{\left(37-35\right)\left(37+35\right)}=\sqrt{72\cdot2}=12\)
b: \(=\sqrt{\left(65-63\right)\left(65+63\right)}=\sqrt{128\cdot2}=16\)
c: \(=\sqrt{\left(221-220\right)\left(221+220\right)}=\sqrt{441}=21\)
d: \(=\sqrt{\left(117-108\right)\left(117+108\right)}=\sqrt{225\cdot9}=3\cdot15=45\)
Rút gọn biểu thức T= căn 36 + căn 9 - căn 49
Thực hiện phép tính B= căn 2 (căn 50 - 3 căn 2 )
Ai chỉ với
\(\sqrt{36}+\sqrt{9}-\sqrt{49}\)
\(=6+3-7\)
\(=2\)
\(\sqrt{2}\cdot\left(\sqrt{50}-3\sqrt{2}\right)\)
\(=\sqrt{2}\cdot\left(5\sqrt{2}-3\sqrt{2}\right)\)
\(=\sqrt{2}\cdot2\sqrt{2}\)
\(=4\)
a) \(T=\sqrt{36}+\sqrt{9}-\sqrt{49}\)
\(=6+3-7\)
\(=2\)
b) \(B=\sqrt{2\left(\sqrt{50}-3\sqrt{2}\right)}\)
\(=\sqrt{10\sqrt{2}-6\sqrt{2}}\)
\(=\sqrt{\left(10-6\right)\sqrt{2}}\)
\(=\sqrt{4\sqrt{2}}\)
\(\approx2,39\)
bài 1rút gọn bt a, 2 căn 10 - 5 trên 4 - căn 10 b, (2/3 căn 3) - (1/4 căn 18) + (2/5 căn 2) - 1/4 căn 12 bài 2:c/m các đẳng thức : [căn x + căn y trên căn x - căn y) - ( căn x - căn y trên căn x + căn y) : căn xy trên x-y =4 bài 3: cho B={[2 căn x trên căn x +3] + [ căn x trên căn x - 3] - 3[ căn x +3] trên x-9} : { [ 2 căn x -2 trên căn x -3] -1} a, rút gọn b, tìm x để P<-1 Mọi ng giúp mk nhé
bài 1 : tính , rút gọn
a, 4 căn 3a -3 căn 12a +6 căn a phần 3 - 2 căn 20a
b, 1+ căn 17 1 - căn 7
--------------------------- + ----------------------------
căn 2 +căn 4 + căn7 căn 2 - căn 4-căn7
a: Ta có: \(4\sqrt{3a}-3\sqrt{12a}+\dfrac{6\sqrt{a}}{3}-2\sqrt{20a}\)
\(=4\sqrt{3a}-6\sqrt{3a}+2\sqrt{2a}-4\sqrt{5a}\)
\(=-2\sqrt{3a}+2\sqrt{2a}-4\sqrt{5a}\)