Tính S tam giác ABC đều có cạnh a
a) viết thuật toán
b)nêu 2 cách test bài toán
Cho lăng trụ tam giác đều ABCA’B’C’ có AA' = a 2 , ∆ ABC đều cạnh a. Tính diện tích S của ∆ A'BC.
A. S = a 2 3 4
B. S = a 3 3 2
C. S = a 2 2 2
D. S = a 2 2
Cho trước ba số dương a, b và c. Cho biết ba số đó có thể là độ dài ba cạnh của một tam giác hay không.
a. Xác định bài toán
b. Nêu ý tưởng giải bài toán
c. Viết thuật toán
a. Xác định bài toán (0,5đ)
- Input: Ba số dương a, b và c
- Output: Kiểm tra a, b, c có là ba cạnh của một tam giác hay không.
b. Ý tưởng: Ba số dương a, b và c là độ dài các cạnh của một tam giác khi và chỉ khi a + b > c, b + c > a, c + a > b. (0.5đ)
c. Thuật toán (2đ)
Bước 1: Nhập ba số dương a, b và c
Bước 2 : Nếu a + b > c và b + c > a và c + a > b thì thông báo ba số a, b và c tạo thành 3 cạnh của tam giác ngược lại thông báo ba số a, b và c không tạo thành ba cạnh của tam giác.
Bước 3: Kết thúc thuật toán
Hãy viết thuật toán: cho 3 số a, b, c nếu a, b, c là cạnh của tam giác thì tính diện tích và đề xuất các bộ Test tiêu biểu?
Test 1: 3 4 5
=>6
Test 2: 1 2 3
=>No
Bài 1 . Viết thuật toán tính diện tích hình tròn bán kính r (nêu ý tưởng ; xác định bài toán ; dùng cả liệt kê + sơ đồ khối)
Bài 2 . Viết thuật toán tính chu vi hình vuông cạnh a (nêu ý tưởng ; xác định bài toán ; dùng cả liệt kê + sơ đồ khối)
Bài 3 . Các loại bộ nhớ ngoài thường dùng hiện nay là những loại nào? Cho biết điểm khác nhau giữa chúng
Bài 1:
Ý tưởng: Sau khi nhập bán kính r, chúng ta sẽ tính diện tích theo công thức \(S=r^2\cdot pi\)
Xác định bài toán
-Input: Bán kính r
-Output: Diện tích hình tròn có bán kính r
Mô tả thuật toán
-Bước 1: Nhập r
-Bước 2: \(s\leftarrow pi\cdot sqr\left(r\right)\)
-Bước 3: Xuất s
-Bước 4: Kết thúc
Bài 2:
Ý tưởng: Sau khi nhập cạnh a chúng ta sẽ tính chu vi hình vuông có cạnh a theo công thức \(S=4\cdot a\)
Xác định bài toán:
-Input: Cạnh a
-Output: Chu vi hình vuông có cạnh a
Mô tả thuật toán
-Bước 1: Nhập a
-Bước 2: s←a*4;
-Bước 3: Xuất s
-Bước 4: Kết thúc
cho tam giác ABC có góc vuông A và cho biết cạnh a và góc B. Hãy viết thuật toán để tính góc C, cạnh b và cạnh c
Mn giúp mk bài này vs ạ
Bài toán 1: Cho tam giác ABC cân tại A, trung tuyến AM. Đường trung trực của AB cắt AM ở O. Chứng minh rằng điểm 0 cách đều 3 đỉnh của tam giác ABC.
Bài toán 2: Cho tam giác cân ABC (AB = AC). Đường trung trực của AC cắt AB ở D. Biết CD là tia phân giác của góc ACB. Tính các góc của tam giác ABC.
Bài toán 3: Cho tam giác đều ABC. Trên các cạnh AB, BC, CA lấy theo thứ tự ba điểm M, N, P sao cho AM = BN = CP.
a) Chứng minh tam giác MNP là tam giác đều b) Gọi O là giao điểm các đường trung trực của tam giác ABC. Chứng minh rằng 0 cũng là
giao điểm của các đường trung trực của tam giác MNP.
im đi Lê Minh Phương
kệ mẹ tao, thằng điên
Biết rằng : Trong 1 tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng 1 nửa cạnh huyền . Hãy giải bài toán sau:
Cho tam giác ABC có 2 cạnh góc vuông AB = 3cm, AC = 4cm. Tính khoảng cách từ đỉnh A tới trọng tâm G của tam giác ABC.
tự vẽ hình ta vẽ AK là đường trung tuyến của cạnh huyền
xét tam giác ABC có:
AB2+AC2 = BC2 ( đ/lý py-ta-go)
=> 32 + 42 = BC2
=> 9 + 16 = BC2
=> BC = 25
=> BC = \(\sqrt{25}=5cm\)
tam giác ABC có AK là đường trung tuyến vs cạnh huyền => AK = \(\frac{BC}{2}=\frac{5}{2}=2,5\)
=> AG = \(\frac{2}{3}AK\) (đ/lý) => \(\frac{2}{3}x2,5=1,66666667\)
hình như mk làm sai hoặc bn sai đề
để ghi lại khúc cuối
AG = \(\frac{2}{3}AK=>\frac{2}{3}x\frac{5}{2}=\frac{5}{3}cm\)
có \(5:2=\frac{5}{2}\) nên mới có 5/2
Bài 4: Cho tam giác ABC vuông tại A có đường cao AH, biết AB=3cm. AC=4cm, trên cạnh AB lấy điểm I sao IA=2IB. Đoạn CI cắt AH tại điểm D. Tính dài đoạn thẳng CD
Bài 5: Cho tam giác đều ABC, điểm M nằm trong tam giác ABC sao cho AM^2=BM^2 + CM^2. Tính số đo góc BMC
Bài 6: Cho hình bình hành ABCD. Trên các cạnh BC và AB ta lấy lần lượt hai điểm M và N sao cho AM=CN. Chứng minh SADC = SCDN từ đó suy ra D cách đều AM và CN
Cho hình lăng trụ ABC. A'B'C' có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của A’ lên (ABC) trùng với tâm O của tam giác ABC, thể tích của khối lăng trụ ABC. A'B'C' bằng 3 a 3 . Tính khoảng cách h giữa hai đường thẳng AA' và BC
A. h = a
B. h = 7 a 6
C. h = 6 a 7
D. h = a 3 2