Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đào Quỳnh My
Xem chi tiết
Lê Tự Nguyên Hào
26 tháng 6 2016 lúc 15:32

x : y/z = x/y . z

x . z/y = x/y . z

xz/y = xz/y (=) đpcm

Nguyễn Đào Quỳnh My
Xem chi tiết
Cold Wind
26 tháng 6 2016 lúc 15:26

\(x:\left(y:z\right)=x:\frac{y}{z}=\frac{xz}{y}\)

\(\left(x:y\right)\cdot z=\frac{x}{y}\cdot z=\frac{xz}{y}\)

Vậy \(x:\left(y:z\right)=\left(x:y\right)\cdot z\)

o0o I am a studious pers...
26 tháng 6 2016 lúc 15:29

Ta xét từng vế là dc thôi bạn

  \(x:\left(y:z\right)\)

\(=x.\frac{y}{z}=\frac{xz}{y}\)

\(\left(x:y\right):z=\frac{x}{y}.z=\frac{xz}{y}\)

\(=>x:\left(y:z\right)=\left(x:y\right):z\) ( đpcm )

Phạm Nguyễn Nhã Uyên
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 10 2021 lúc 17:41

Ta có:

\(\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+0}=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2\left(x+y+z\right)}{xyz}}\)

\(=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2}{xy}+\dfrac{2}{yz}+\dfrac{2}{zx}}=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}\)

\(=\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|\) là số hữu tỉ

Ichigo
Xem chi tiết
Nguyễn Anh Duy
25 tháng 10 2016 lúc 16:03

Cho các số hữu tỉ tùy ý x, y, z khác 0. Chứng tỏ rằng

x : (y . z) = (x : y) : z

Giả sử \(x=\frac{a}{b},b\ne0\), \(y=\frac{c}{d},c\ne0,d\ne0\), \(z=\frac{h}{g},h\ne0,g\ne0\)

Ta có: \(y.z=\frac{c}{d}.\frac{h}{g}=\frac{c.h}{d.g},\) \(c,h\ne0,\) \(d,g\ne0\)

\(A=x\div\left(y.z\right)=\frac{a}{b}\div\frac{x.h}{d.g}\Rightarrow A=\frac{a.d.g}{b.c.h}\left(1\right)\)

Mặt khác ta có:

\(x\div y=\frac{a}{b}\div\frac{c}{d}=\frac{a.d}{b.c}\)

\(B=\left(x\div y\right)\div z=\frac{a.d}{b.c}\div\frac{h}{g}\Rightarrow B=\frac{a.d.g}{b.c.h}\left(2\right)\)

So sánh (1) và (2) ta được

\(x\div\left(y.z\right)=\left(x\div y\right)\div z\)

Ta có thể phát biểu như sau: Muốn chia một số cho một tích hai thừa số khác 0 ta có thể chia số đó cho một thừa số rồi lấy kết quả chia cho thừa số kia

Ta cũng có kết quả tương tự:

\(x\div\left(y.z\right)=\left(x\div z\right)\div y\)

Nguyễn Anh Duy
25 tháng 10 2016 lúc 15:49

mik thấy bài này chỉ hơi khó chút mak bạn kêu khó quá à =="

Ngô Thị Thanh Tâm
Xem chi tiết
Đinh Quang Minh
Xem chi tiết
Trần Thảo Đan
Xem chi tiết
GV
27 tháng 9 2014 lúc 10:28

Lấy z là trung bình cộng của x và y:

z = (x + y)/2

z là số hữu tỉ vì nó có thể biểu diễn được thành phân số có tử số và mẫu số là số nguyên. Dễ dạng chứng minh được:

x < (x + y)/2 < y

Trần Thảo Đan
26 tháng 8 2019 lúc 15:36

thanks

Ngọc
Xem chi tiết
zZz Cool Kid_new zZz
4 tháng 10 2019 lúc 19:23

Cho hỏi ko phải cô giáo có dc làm ko:v

Xét \(x+y+z=0\) ta có:\(x+y=-z;y+z=-x;z+x=-y\)

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(-x\right)\left(-y\right)\left(-z\right)=-xyz\)

\(\Rightarrow P=\frac{-xyz}{xyz}=-1\)

Xét \(x+y+z\ne0\) ta có:

\(\frac{x+y-z}{z}=\frac{x-y+z}{y}=\frac{-x+y+z}{x}\)

\(\Rightarrow\frac{x+y}{z}-1=\frac{x+z}{y}-1=\frac{y+z}{x}-1\)

\(\Rightarrow\frac{x+y}{z}=\frac{x+z}{y}=\frac{z+y}{x}\) ( 1 )

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\left(1\right)=\frac{x+y+x+z+z+y}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

Khi đó:

\(P=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}=\frac{x+y}{z}\cdot\frac{y+z}{x}\cdot\frac{z+x}{y}=2\cdot2\cdot2=8\)

Ngọc
4 tháng 10 2019 lúc 19:00

các bạn ơi làm hộ mình với

Ngọc
4 tháng 10 2019 lúc 19:02

giúp mình với , các cô giáo ơi giúp con con ko làm được ạ lát nữa con phải nộp rồi

Nguyễn Trà My
Xem chi tiết